A decade-long record of temporal gravity observed by the Swarm satellites

J. Encarnação^{1,2} D. Arnold³ A. Bezdĕk⁴ C. Dahle⁵ J. Guo⁷ J. van den IJssel¹ A. Jäggi³ J. Klokǒcník⁴ S. Krauss⁸ T. Mayer-Gürr⁸ U. Meyer³ J. Sebera⁴ CK Shum⁷ P. Visser¹ Y. Zhang⁷

¹Delft University of Technology ²Center for Space Research, The University of Texas at Austin ³Astronomical Institute of the University of Bern ⁴Astronomical Institute of the Czech Academy of Sciences ⁵GFZ German Research Centre for Geosciences ⁶Royal Netherlands Meteorological Institute ⁷School of Earth Sciences of The Ohio State University ⁸Institute of Geodesy of the Graz University of Technology

> Swarm 10 Year Anniversary & Science Conference 2024 08 – 12 April 2024 | Copenhagen, Denmark

Context and objectives

- ESA/DISC funded project (since 9/2017)
- Provide highest-quality monthly-independent GNSS-based gravity field models from Swarm
- Combine individual gravity solutions, computed with:
 - different kinematic orbit solutions
 - different inversion approaches
- Monthly combined Swarm gravity field models:
 - period length set by the calendar month (first to last day)
 - from 2013-12-01 to 2023-12-31
 - available from:
 - ► ICGEM https://icgem.gfz-potsdam.de/sp/02 COST-G /Swarm
 - > ESA swarm-diss.eo.esa.int > Level2longterm > EGF

Kinematic Orbits

Institute	Software	Reference
AIUB	Bernese v5.3	Jäggi et al. (2016)¹
lfG	Gravity Recovery Object Oriented Programming System (GROOPS)	Suesser-Rechberger et al. (2022) ²
TUD	GPS High precision Orbit determination Software Tool (GHOST)	IJssel et al. (2015) ³

¹ftp://ftp.aiub.unibe.ch/leo_orbits/swarm
²ftp://ftp.tugraz.at/outgoing/ITSG/tvgogo/orbits/Swarm
³http://earth.esa.int/web/guest/swarm/data-access

Individual Gravity field models

Inst.	Approach	Reference
AIUB	Celestial Mechanics Approach	Jäggi et al. (2016)
ASU	Decorrelated Acceleration Approach	Bezdĕk et al. (2016)
lfG	Short-Arcs Approach Improved	Suesser-Rechberger et al. (2022)
OSU	Energy Balance Approach	Guo et al. (2015)

<ロ> <日> <日> <日> <日> <日> <日> <日</p>

Combined Gravity field models

- Combination at the level of solutions, up to degree 40
- Weights applied to individual solutions derived from Variance Component Estimation (VCE)
- Degrees 2-20 considered in VCE
- João Teixeira da Encamação and Pieter Visser (2019). TN-03: Swarm models validation. Tech. rep. TU Delft. doi: 10.13140/RG.2.2.33313.76640

Gravity field model pre-processing

- Analysis spans 2016-01-01 until 2023-12-31
- Temporal variations relative to static GGM05G (Ries et al., 2016)
- Gaussian smoothing with 750-km radius
- C₂₀ replaced with values from weekly GRACE/GRACE-FO TN-14 time series
- Swarm ACC data not used

Analyses setup

- GRACE/GRACE-FO CSR RL06 considered (with same pre-processing)
- GRACE/GRACE-FO solutions interpolated at Swarm model epochs (except over gaps longer than 120 days)
- Ocean signal, with no buffer zone, removed for land analyses
- ► Ocean analyses exclude coastal areas ≈ 1000 km or less from coast lines
- IfG KO solutions:
 - Considered for ASU solutions for Oct Dec 2019 (and later)
 - Not considered for RL01 solutions prior to Jan 2020

Signal variability: 18 selected basins

temporal STD of Swarm RL01 (2014-01 to 2023-09) 750km Gaussian smoothing

UNIVERSITÄT

BERN

Astronomical Institute of the Czech Academy of Sciences

TUDelft TU THE OHIO STATE UNIVERSITY

temporal STD of GRACE (2014-01 to 2023-11)

750km Gaussian smoothing

<ロ> <日> <日> <日> <日> <日> <日> <日</p>

Statistics from all 18 analysed basins

solution	constant term ∆ RMS [cm]	linear term ∆ RMS [cm/year]	corr. coeff. mean []
Swarm RL01	1.05	0.35	0.75
GRACE	0.00	0.00	1.00

・

Conclusions

- Combined model better than individual models under any metric
- Swarm signal useful below degree 15 (750 km radius smoothing)
- Swarm gravity field model quality stable since 2016,
 - but increase in solar activity slowly degrading disagreement with GRACE/GRACE-FO
- IfG KO orbit processing changes result in a visible improvement since 2020
- ▶ Ocean areas are \approx 30-50% noisier than land areas
- Seasonal land signal clearly resolvable by Swarm (compared to GRACE/GRACE-FO):
 - ► Temporal correlations dip under 0.5 over degree 14
 - ► Global spatial agreement at ≈ 3-4 cm RMS EqWH
 - Over 18 analysed basins (of various sizes), considering all Swarm data:
 - ▶ trends agree under 0.36 cm/year EqWH
 - correlation is at 0.75

João Teixeira da Encanação et al. (2020). "Description of the multi-approach gravity field models from Swarm GPS data". In: *Earth System Science Data* 12.2, pp. 1385–1417. doi: <u>10.5194/essd-12-1385-2020</u>. url: https://essd.copernicus.org/articles/12/1385/2020/

Extra slides

Astronomical Institute of the Czech Academy of Sciences

TUDelft **TU** Graz THE OHIO STATE UNIVERSITY

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Ocean mask

Software: Bernese v5.5 (Dach et al., 2015)

Approach: Celestial Mechanics Approach (Beutler et al., 2010)

Reference GFM: AIUB-GRACE03S (Jäggi et al., 2011)

Empirical Parameters: Daily and 15 minutes, both piecewise-constant (constrained)

Single Sat. Combination: NEQ equal weights

Temporal correlations: None

Drag Model: None

EARP and EIRP Models: None

ASU Processing strategy

Software: (developed in-house)

Approach: Decorrelated Acceleration Approach (Bezděk et al., 2014)

Reference GFM: ITG GRACE-only static model, 2010 (Mayer-Gürr et al., 2010)

Empirical Parameters: Daily constant-piecewise

Coord. Axis Combination: TBD

Single Sat. Combination: NEQ, equal weights

Temporal correlations: Empirical decorrelation filter

Drag Model: Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (Picone et al., 2002)

EARP and EIRP Models: Knocke, Ries, and Tapley (1988)

UNIVERSITÄT

RERN

Non-tidal Model: Atmosphere and Ocean De-aliasing Level 1B RL06 (Dobslaw et al., 2017)

Ocean Tidal Model: 2004 Finite Element Solution (Lyard et al., 2006)

IfG Processing strategy

Software: GROOPS

Approach: Short-Arcs Approach (Mayer-Gürr, 2006) **Reference GFM:** GOCO release 05 satellite-only gravity field model (Mayer-Gürr, 2015) **Empirical Parameters:** Piecewise linear for each arc (ranging from 15 to 45 minutes) Single Sat. Combination: NEQ, relative weighting from VCE **Temporal correlations:** Empirical covariance function **Drag Model:** Jacchia-Bowman 2008 (Bowman et al., 2008) **EARP and EIRP Models:** Rodriguez-Solano et al. (2012) **Non-tidal Model:** AOD1B-RL06 (Dobslaw et al., 2017) **Ocean Tidal Model:** 2014 Finite Element Solution (Carrere et al., 2015)

Permanent Tide System: zero tide

OSU Processing strategy

Software: (developed in-house) **Approach:** Improved Energy Balance Approach (Shang et al., 2015) **Reference GFM:** GRACE Intermediate Field 48 (Ries et al., 2011) up to Degree and Order (D/O) 200 **Empirical Parameters:** 2nd order polynomial every 3 hours, 1-Cycle Per Revolution (CPR) sinusoidal every 24 hours Single Sat. Combination: NEQ, equal weights Temporal correlations: None Drag Model: Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (Picone et al., 2002) EARP and EIRP Models: Knocke, Ries, and Tapley (1988) **Non-tidal Model:** A O D B 1 B Flechtner (2011) **Ocean Tidal Model:** 2011 Empirical Ocean Tide model (Savcenko and Bosch, 2012) Permanent Tide System: tide-free

Atmospheric Tidal Model: Biancale and Bode (2006)

Regularization: none

Solid Earth Tidal Model: IERS2010

Pole Tidal Model: IERS2010

Ocean Pole Tidal Model: IERS2010

Third body perturbations: Sun, Moon, Mercury, Venus, Mars, Jupiter and Saturn, following the JPL Planetary and Lunar Ephemerides (Folkner et al., 2014)

 $C_{2,0}$ coefficient: estimated alongside other coefficients

Acronvms I	
AA	Acceleration Approach, Rummel (1979)
AIUB	Astronomical Institute of the University of Bern,
AOD1B	Switzerland, <u>Atmosphere and Ocean De-aliasing Level 1B product</u> , Schmidt and Meyer (2006) Electioner (2007) and Electioner (2011)
AOD1B-RL06	Atmosphere and Ocean De-aliasing Level 1B RL06 product,
ASU	Astronomical Institute (Astronomick'y ústav), AVCR, Ond [*] rejov,
AVCR	Czech Academy of Sciences (Akademie věd České Republiky), Czech Republic, www.avcr.cz/en/
CMA	Celestial Mechanics Approach, Beutler et al. (2010)
CPR	Cycle Per Revolution
D/O	Degree and Order
DAA	Decorrelated Acceleration Approach, Bezdĕk et al. (2014) and Bezdĕk et al. (2014)
EARP	Earth Albedo Radiation Pressure
EIRP	Earth Infrared Radiation Pressure

Acronyms II

EBA	Energy Balance Approach, O'Keefe (1957) and Jekeli (1999)
EOT	Empirical Ocean Tide model
EOT11a	2011 Empirical Ocean Tide model, Savcenko and Bosch (2012)
FES	Finite Element Solution global tide model
FES2004	2004 Finite Element Solution global tide model, Lyard et al. (2006)
FES2014	2014 Finite Element Solution global tide model, Carrere et al. (2015)
GFM	Gravity Field Model
GHOST	GPS High precision Orbit determination Software Tool, Helleputte (2004) and Wermuth, Montenbruck, and Helleputte (2010)
GIF48	GRACE Intermediate Field 48, Ries et al. (2011)
GOCO	Gravity Observation COmbination
GOCO05S	GOCO release 05 satellite-only gravity field model, Mayer-Gürr (2015)
GPS	Global Positioning System
GRACE	Gravity Recovery And Climate Experiment, Tapley, Reigber, and Melbourne (1996) and Tapley (2004)
GRACE-FO	GRACE Follow On, Kornfeld2019

Acronyms III	
GROOPS	Gravity Recovery Object Oriented Programming Systeem,
	Mayer-Gürr et al., (2020)
IEBA	Improved Energy Balance Approach, Shang et al. (2015)
IERS	International Earth Rotation Service
IERS2010	IERS Conventions 2010, Petit and Luzum (2010) Institute
lfG	of Geodesy, TUG, Graz, www.ifg.tugraz.at
ITG	Institut für Geodäsie und Geoinformation, Germany
ITG-GRACE2010s	ITG GRACE-only static model, 2010, Mayer-Gürr et al. (2010)
JB2008	Jacchia-Bowman 2008, Bowman et al. (2008)
JPL	Jet Propulsion Laboratory, USA, www.jpl.nasa.gov
JPL-PLE	JPL Planetary and Lunar Ephemerides, Folkner et al. (2014)
KO	Kinematic Orbit
L1B	Level 1B data
NEQ	Normal Equation
NRLMSISE	US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar atmospheric model, Picone et al. (2002)
OSU	Ohio State University, www.osu.edu

Acronyms IV

RL06	Release 6
RMS	Root Mean Squared
SAA	Short-Arcs Approach, Mayer-Gürr (2006)
TUG	Graz University of Technology, Austria, www.tugraz.at
USA	United States of America
VCE	Variance Component Estimation

Symbols

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・
 ・
 ・
 ・
 ・
 ・

 ・
 ・

 ・
 ・

 ・

 ・

References I

Beutler, Gerhard et al. (2010). "The celestial mechanics approach: theoretical foundations". In: Journal of Geodesy 84.10, pp. 605-624. doi:
<u>10.1007/s00190-010-0401-7</u> .url: <u>http://link.springer.com/10.1007/s00190-010-0401-7</u> (cit. on pp. <u>51,</u> <u>56)</u> .
Bezděk, Aleš et al. (2014). "Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites". In: Advances in Space Research 53.3, pp. 412–429. doi: <u>10.1016/j.asr.2013.11.031</u> . url: <u>http://linkinghub.elsevier.com/retrieve/pii/S0273117713007345</u> (cit. on pp. <u>52, 56)</u> .
Bezděk, Aleš et al. (2016). "Time-variable gravity fields derived from GPS tracking of Swarm". In: Geophysical Journal International 205.3,
pp. 1665-1669. doi: <u>10.1093/gji/ggw094</u> . url: <u>https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggw094</u> (cit. on pp. <u>4</u> , <u>56).</u>
Biancale, R. and A. Bode (2006). Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure
data. Tech. rep. Potsdam, Germany: Deutsches GeoForschungsZentrum GFZ. doi: 10.2312/GFZ.b103-06011 (cit. on p. 55).
Bowman, Bruce et al. (2008). "A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices". In: <i>AIAA/AAS Astrodynamics Specialist Conference and Exhibit</i> . August. Reston, Virigina: American Institute of Aeronautics and Astronautics. doi: <u>10.2514/6.2008-6438</u> . url: <u>http://arc.aiaa.org/doi/10.2514/6.2008-6438</u> (cit. on pp. <u>53</u> , <u>58</u>).
Carrere, L et al. (2015). "FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region".
 In: EGU General Assembly. Vienna, Austria (cit. on pp. <u>53, 57).</u>
Dach, Rolf et al. (2015). Bernese GNSS Software Version 5.2. Bern: Bern Open Publishing. doi: <u>10.7892/boris.72297</u> .url: http://www.bernese.unibe.ch/docs/DOCU52.pdf (cit. on p. <u>51).</u>

References II

- Dobslaw, H. et al. (2017). "A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06". In: *Geophysical Journal International* 211.1, pp. 263–269. doi: <u>10.1093/gji/ggx302</u>.url: http://academic.oup.com/gji/article/211/1/263/3979461/A-new-highresolution-model-of-nontidal-atmosphere (cit. on pp. <u>51–53</u>, <u>56).</u>

- Flechtner, Frank (2007). Gravity Recovery and Climate Experiment AOD1B Product Description Document for product releases 01 to 04. Technical report GR-GFZ-AOD-0001. Potsdam: GeoForschungszentrum.url: ftp://podaac.jpl.nasa.gov/pub/grace/doc/AOD1B_20070413.pdfhttps://www.gfzpotsdam.de/fileadmin/gfz/sec12/pdf/GRACE/AOD1B/AOD1B_20070413.pdf (cit. on p. <u>56).</u>
- (2011). GRACE AOD1B RL04 Quality Assurance. Miscellaneous. url:
- http://op.gfz-potsdam.de/grace/results/grav/g007 aod1b r104.html (visited on 07/23/2015) (cit. on pp. 51, 54, 56).
- Flechtner, Frank, Roland Schmidt, and Ulrich Meyer (2006). "De-aliasing of Short-term Atmospheric and Oceanic Mass Variations for GRACE". In: Observation of the Earth System from Space. Ed. by J. Flury et al. Springer Berlin Heidelberg, pp. 83–97. doi: 10.1007/3-540-29522-4_7. url: http://books.google.com/books?hl=en&lr=&id=g8I19u72Hx8C&oi=fnd&pg=PA83&dq=De-aliasing+of+Shortterm+Atmospheric+and+Oceanic+Mass+Variations+for+GRACE&ots=-vYhwz6msa&sig=MX1THikYA49jz-u4uw9RmYgxnA (cit. on p. <u>56)</u>.
- Folkner, William M et al. (2014). "The Planetary and Lunar Ephemerides DE430 and DE431". In: Interplanet. Netw. Prog. Rep 42.196. url: https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf (cit. on pp. <u>55</u>, <u>58</u>).
- Guo, J. Y. et al. (2015). "On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking". In: *Celestial Mechanics and Dynamical Astronomy* 121.4, pp. 415–429. doi: 10.1007/s10569-015-9610-y. url: http://link.springer.com/10.1007/s10569-015-9610-y (cit. on p. <u>4)</u>.
- Helleputte, T. van (2004). "GPS High Precision Orbit Determination Software Tools: User Manual". Oberpfaffenhofen (cit. on p. 57).

References III

- IJssel, Jose van den et al. (2015). "Precise science orbits for the Swarm satellite constellation". In: Advances in Space Research 56.6, pp. 1042–1055. doi: 10.1016/j.asr.2015.06.002. url: http://linkinghub.elsevier.com/retrieve/pii/S0273117715004068 (cit. on p. <u>3).</u>
- Jäggi, A. et al. (2011). AIUB-GRACE03S. Bern, Switzerland. url: http://icgem.gfz-potsdam.de/ (cit. on p. 51).
 - Jäggi, A. et al. (2016). "Swarm kinematic orbits and gravity fields from 18 months of GPS data". In: *Advances in Space Research* 57.1, pp. 218–233. doi: <u>10.1016/j.asr.2015.10.035</u>. url: <u>https://linkinghub.elsevier.com/retrieve/pii/S0273117715007541</u> (cit. on pp. <u>3, 4)</u>.
 - Jekeli, Christopher (1999). "The determination of gravitational potential differences from satellite-to-satellite tracking". In: *Celestial Mechanics* and Dynamical Astronomy 75.2, pp. 85–101. doi: 10.1023/A:1008313405488.url: http://www.springerlink.com/index/X858161743KK4553.pdf (cit. on p. <u>57)</u>.
 - Knocke, P., J. Ries, and B. Tapley (1988). "Earth radiation pressure effects on satellites". In: *Astrodynamics Conference*. Reston, Virigina: American Institute of Aeronautics and Astronautics. doi: <u>10.2514/6.1988-4292</u>. url: <u>http://arc.aiaa.org/doi/10.2514/6.1988-4292</u> (cit. on pp. <u>52, 54)</u>.
 - Lyard, Florent et al. (2006). "Modelling the global ocean tides: modern insights from FES2004". In: Ocean Dynamics 56.5-6, pp. 394–415. doi: 10.1007/s10236-006-0086-x. url: http://link.springer.com/10.1007/s10236-006-0086-x (cit. on pp. <u>52</u>, <u>57</u>).
- Mayer-Gürr, Torsten (2006). "Gravitationsfeldbestimmung aus der Analyse kurzer Bahnb"ogen am Beispiel der Satellitenmissionen CHAMP und GRACE". Doctoral dissertation. Rheinischen Friedrich-Wilhelms Universität Bonn. url: <u>http://hss.ulb.uni-bonn.de/2006/0904/0904.pdf</u> (cit. on pp. <u>53, 59).</u>
 - (2015). "The Combined Satellite Gravity Field Model GOCO05s". In: EGU General Assembly. EGU2015-12364. Vienna, Austria (cit. on pp. <u>53</u>, <u>57</u>).

References IV

- Mayer-Gürr, Torsten et al. (2010). "ITG-Grace2010: the new GRACE gravity field release computed in Bonn". In: *EGU General Assembly*. EGU2010-2446. Vienna, Austria. url: <u>http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010</u> (cit. on pp. <u>52, 58)</u>.
- Mayer-gürr, Torsten et al. (2020). "GROOPS : A software toolkit for gravity field recovery and GNSS processing". In: *Earth and Space Science Open Archive*. doi: 10.1002/essoar.10505041.1. url: https://www.essoar.org/doi/10.1002/essoar.10505041.1 (cit. on p. <u>58)</u>.
- O'Keefe, John A. (1957). "An application of Jacobi's integral to the motion of an earth satellite". In: *The Astronomical Journal* 62, p. 265. doi: <u>10.1086/107530</u>. url: <u>http://adsabs.harvard.edu/cgi-bin/bib_query?1957AJ....62..2650</u> (cit. on p. <u>57)</u>.
 - Petit, G'erard Gerard and Brian Luzum (2010). "IERS Conventions (2010)". Frankfurt am Main. url: <u>http://www.iers.org/TN36/</u> (cit. on p. <u>58).</u>
 - Picone, J. M. et al. (2002). "NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues". In: *Journal of Geophysical Research: Space Physics* 107.A12, SIA 15–1–SIA 15–16. doi: <u>10.1029/2002JA009430</u>. url: http://doi.wiley.com/10.1029/2002JA009430 (cit. on pp. <u>52</u>, <u>54</u>, <u>58</u>).

Ries, J. et al. (2016). The Combined Gravity Model GGM05C. Tech. rep. CSR-TM-16-01. Austin: Center for Space Research, University of Texas at Austin. doi: <u>10.26153/tsw/1461</u>. url: <u>https://repositories.lib.utexas.edu/handle/2152/74341</u> (cit. on p. <u>6)</u>.

Ries, John C. et al. (2011). "Mean Background Gravity Fields for GRACE processing". In: *GRACE Science Team Meeting*. Austin, USA. url: http://download.csr.utexas.edu/pub/grace/Proceedings/Presentations_GSTM2011.pdf (cit. on pp. <u>54</u>, <u>57</u>).

Rodriguez-Solano, C. J. et al. (2012). "Impact of Earth radiation pressure on GPS position estimates". In: Journal of Geodesy 86.5, pp. 309–317. doi: 10.1007/s00190-011-0517-4. url: http://link.springer.com/10.1007/s00190-011-0517-4 (cit. on p. 53).

Rummel, R. (1979). "Determination of short-wavelength components of the gravity field from satellite-to-satellite tracking or satellite gradiometry". In: *Manuscripta Geodaetica* 4.2, pp. 107–148 (cit. on p. <u>56)</u>.

References V

Savcenko, R and W Bosch (2012). EOT11a - Empirical ocean tide model from multi-mission satellite altimetry. Tech. rep. Mu'nchen, Germany: Deutsches Geodatisches Forschungsinstitut. url: https://epic.awi.de/36001/1/DGFI Report 89.pdf (cit. on pp. <u>51, 54, 57)</u>.

Shang, Kun et al. (2015). "GRACE time-variable gravity field recovery using an improved energy balance approach". In: *Geophysical Journal International* 203.3, pp. 1773–1786. doi: <u>10.1093/gji/ggv392</u>. url: https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggv392 (cit. on pp. <u>54</u>, <u>58</u>).

Suesser-Rechberger, Barbara et al. (2022). "Improved precise kinematic LEO orbits based on the raw observation approach". In: Advances in Space Research. doi: 10.1016/j.asr.2022.03.014. url: https://doi.org/10.1016/j.asr.2022.03.014 (cit. on pp. <u>3</u>, <u>4</u>).

Tapley, Byron D. (2004). "GRACE Measurements of Mass Variability in the Earth System". In: Science 305.5683, pp. 503–505. doi: 10.1126/science.1099192. url: http://www.sciencemag.org/cgi/doi/10.1126/science.1099192 (cit. on p. <u>57)</u>.

Teixeira da Encarnação, João and Pieter Visser (2019). TN-03: Swarm models validation. Tech. rep. TU Delft. doi: 10.13140/RG.2.2.33313.76640 (cit. on p. <u>5).</u>

- Teixeira da Encarnação, João et al. (2020). "Description of the multi-approach gravity field models from Swarm GPS data". In: *Earth System* Science Data 12.2, pp. 1385–1417. doi: <u>10.5194/essd-12-1385-2020</u>. url: <u>https://essd.copernicus.org/articles/12/1385/2020/</u> (cit. on p. <u>19)</u>.
- Wermuth, Martin, Oliver Montenbruck, and Tom Van Helleputte (2010). "GPS high precision orbit determination software tools (GHOST)". In: 4th International Conference on Astrodynamics Tools and Techniques. Madrid: ESA WPP-308 (cit. on p. <u>57).</u>