Sensitivity of Auroral Zones to the Global Internally Generated Magnetic Field

Stefano Maffei^{1,2}, Joseph W. B. Eggington³, Philip W. Livermore², Jonathan E. Mound², Sabrina Sanchez⁴, Jonathan P. Eastwood³, Mervyn P. Freeman⁵

¹Institute of Geophysics, ETH Zurich, Switzerland; ²School of Earth and Environment, University of Leeds, UK; ³Space and Atmospheric Physics Group, Blackett Laboratory, Imperial College London, London, UK; ⁴Institut de Physique du Globe de Paris, Université Paris-Diderot, Paris, France; ⁵British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK

DEFINITIONS

Auroral oval \Rightarrow influenced by solar activity (space) weather)

Auroral zone \Rightarrow time-averaged auroral oval: controlled by the internal magnetic field (space *climate*)

How do we obtain them

MOTIVATIONS

Observation:

- Northern Zone: shrinking
- Southern Zone: expanding
- Dipole-based scaling laws predict expansion for both

Current explanation:

METHODOLOGY

Green's function's approach

DTU

Q = zones area or centroids latitude: functions of the Gauss coefficients, β_1^m .

Sensitivity to Gauss coefficients, obtained numerically:

· CICH

2. Isolate 65-to-70 latitudinal bands at Earth's surface

AACGM latitude

-20

3. Calculate centroid as additional measure for location

See *Maffei et al., 2023* for more details

 The asymmetric evolution of the geomagnetic field in the two polar regions.

Open questions:

- Effect of global SV? Typically, equatorial effects are neglected (e.g. Zossi et al., 2020).
- Effect of non-dipolar SV? Currently poorly quantified.

Sensitivity to CMB field, B_c :

 $\frac{\partial Q}{\partial B_c} = \sum_{l=1}^{L} \sum_{m=0}^{l} \frac{\partial Q}{\partial \beta_l^m} \frac{\partial \beta_l^m}{\partial B_c}$

Sources of time variation, from the secular variation:

RESULTS: Sources of time variation

Geographical distribution at the CMB

Spectral distribution

RESULTS: Sources of time variation at Earth's surface

Auroral zone surface area yearly change (Earths surface)

Conclusions

References

aacgmv2 Github repository: https://github.com/aburrell/aacgmv2

Laundal, Karl Magnus, and Arthur D. Richmond. "Magnetic coordinate systems." Space Science Reviews 206, no. 1 (2017): 27-59.

Maffei, Stefano, Joseph WB Eggington, Philip W. Livermore, Jonathan E. Mound, Sabrina Sanchez, Jonathan P. Eastwood, and Mervyn P. Freeman. "Climatological predictions of the auroral zone locations driven by moderate and severe space weather events." Scientific Reports 13, no. 1 (2023): 779.

Zossi, Bruno, Mariano Fagre, Hagay Amit, and Ana G. Elias. "Geomagnetic field model indicates shrinking northern auroral oval." Journal of Geophysical Research: Space Physics 125, no. 8 (2020): e2019JA027434.

- The auroral zones location and geometry is heavily affected by nondipolar field components
- Northern zone area shrinking: caused by dipolar and quadrupolar contributions
- Geographical sources of time-variation are distributed globally
- Secular Variation in the SAA region strongly affects the auroral zones.

SWARM 10 YEAR ANNIVERSARY SCIENCE CONFERENCE 08–12 April 2024 | Copenhagen, Denmark