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Introduction

➢ Volcanic ash dispersion forecasting is vital for aviation and the accuracy is depended on both to the wind

fields and the knowledge of the source term of the eruption.

➢ Aeolus wind data assimilation by ECMWF provides improved meteorological fields for advection

calculations in volcanic ash dispersion models.

➢ In the framework of the NEWTON ESA study, we examined the potential improvements on Etna volcanic

plume forecasts due to Aeolus assimilated meteorological fields (published at Scientific Reports).

➢ We initiate the Early Warning System (EWS) developed within the e-shape EuroGEO project in support of

the Volcanic Ash Advisory Centers (VAACs).



Early Warning System at the PANGEA-NOA during e-shape – EuroGEO project

MSG-SEVIRIVONA ALERTS

• Near-real-time alerts from Etna volcano eruptions.
• The alerts are used in the PANGEA to forecast the 

volcanic plume pathway and identify the volcanic 
particles above the area the days following an 
eruption.

• Lidar observations are used for model evaluation 
and improvement.
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(https://react.space.noa.gr/intranet/volcano-ews)

(more information about EWS Kampouri et al., 2021)

https://react.space.noa.gr/intranet/volcano-ews


Workflow

Initialization of  WRF-NOA 

48 hours WRF forecast runs initialized with

2 sets of IFS outputs (with/w-o Aeolus) at

12 March 2021, 00:00 UTC (boundary

conditions every 6 hours)

WRF-ARW regional atmospheric model

WRF meteorological fields drive
FLEXPART dispersion model  (EWS)

FLEXPART-WRF dispersion model

Exp1:

Control without 

assimilating Aeolus

IFS outputs
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Exp2:

Assimilated Aeolus 

Rayleigh-clear and 

Mie cloudy HLOS 

wind fields

Initial and boundary conditions

• Evaluation of FLEXPART-WRF

runs vs ACTRIS Lidar profiles.

• Contrasting FLEXPART-WRF

(EWS) ash simulations

(with/w-o Aeolus).



Etna case study on 12 March 2021 

• Near-real time alerts from Etna volcano eruptions (INGV observatory of Catania, Italy).

• Volcanic cloud is moving eastwards crossing Antikythera and Limassol lidar stations.

• Input data of the injection plume height & emission fields (in situ & satellite); derived from 

INGV are used for the initialization of the operational Early Warning System at the PANGEA-NOA

INGV-OE surveillance systems 

Antikythera

Limassol

SEVIRI satellite



Control Run: FLEXPART-WRF Ash Simulation

Antikythera without Aeolus assim

Volcanic ash dispersion without Aeolus assimilation 

12 March 2021

PollyXT observations at the PANGEA station
on 12 March 2021

FLEXPART-WRF ash concentration



Differences in wind fields with/w-o Aeolus assimilation - 300hPa

Upper panel:

• Prevailing Westerly winds – Zonal activity over

the Mediterranean in the upper troposphere.

• Positive differences are evident along the

pathway of the volcanic ash plumes.

Bottom panel:

• In the vertical, the effects of assimilation are

mostly evident between 7-15 km along the cross-

section denoted with the dashed red line.

With Aeolus assimilation

Without Aeolus assimilation

a)

Aeolus Orbit: 12/03/2021, 
at 05:01UTC

b)



Volcanic ash dispersion with/w-o Aeolus assimilation 

12 March 2021

With Aeolus assimilation

Without Aeolus assimilation

• Volcanic ash plume with Aeolus

assimilation arrives over Antikythera

station on 12th March 2021, at

20:45UTC

• Expands southwards with respect to

the control run (without Aeolus

wind assimilation).



Ash concentrations a,b) w/w-o Aeolus assimilation, c) the time-height curtain

plot of the attenuated backscatter coefficient and d) volume linear

depolarization ratio based of PollyXT-NOA lidar retrievals at the PANGEA station

during 12 March 2021 (18:30 to 21:30UTC).

Vertical time-height cross-sections of volcanic ash distribution

a) c) d)

PollyXT observations at PANGEA station on 12 March 2021FLEXPART-WRF with/w-o Aeolus

“W/O” Aeolus assimilation

“W” Aeolus assimilation

b)



• Ash concentrations observed in the

PollyXT lidar are in good agreement

with the model when Aeolus winds are

assimilated (c).

• Despite in “w/o” Aeolus assimilation

run the concentrations are zero (c red

line)

• The observed and simulated mass

concentration peaks are not well

matched (shift of 1km)

Vertical profile of volcanic ash concentration above PANGEA-NOA station 

(from 18:30 to 21:30 UTC)

a) b) c)

Volcanic Ash

FLEXPART control 

Need for better source emissions!!shift of 1km
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Ongoing work and forthcoming actions 

The impact of Aeolus on volcanic ash quantitative dispersion modeling by 

applying inversion techniques on Etna’s volcanic emissions



Inversion techniques

➢ Develop an inverse modeling scheme for estimating the emission rates of volcanic releases, from Etna

volcanic eruption with FLEXPART-WRF model.

➢ Initialize the inversion simulations with yo
m mass concentrations of ground-based PollyXT Lidar combined

with the outputs of M (m×n) SRR FLEXPART runs.

➢ The inversion scheme will be based on the theoretical work of (Stohl, et al., 2011) which was used to yield

volcanic ash emission rates.

M (m×n) is a matrix of source-receptor sensitivities (SRR) calculated with FLEXPART

yo
m: is the vector of the m observed concentrations from PollyXT Lidar

xn: is the vector of n=79 (unknown) emission masses at different heights in the 
source

yo = M x

➢ Estimate Etna volcanic emissions at the source location.



Workflow

Initialization of  WRF-NOA 

48 hours WRF forecast runs initialized with

2 sets of IFS outputs (w/w-o Aeolus) at 12

March 2021, 00:00 UTC (boundary

conditions every 6 hours)

WRF-ARW regional atmospheric model

WRF meteorological fields drive

FLEXPART dispersion model 

FLEXPART-WRF dispersion model

Exp1:

“w/o” Aeolus 

assimilation

IFS outputs
[ECMWF] 

Angela Benedetti
Michael Rennie

Exp2:

“w” Aeolus 

assimilation

Initial and boundary conditions

Run Inversion algorithm: yo = M x

✓ Mw and Mw/o: FLEXPART SRR

“w/w-o” Aeolus

✓ yo: POLLYXT Lidar observations

➢ x: source emissions

Next step

Estimate Mw & Mw/o (FLEXPART

SRR w/w-o Aeolus)

FLEXPART SRR Sensitivities



FLEXPART-WRF (Stohl et al., 2005; Pisso et al., 2019) forward runs

(simulation start: 12032021, 04UTC end: 14032021, 00UTC), initialized

with the data from ECMWF (“w/w-o” Aeolus), for different volcanic ash

sizes:

• Ash1 : 3μm diameter

• Ash2 : 5μm diameter

• Ash3 : 9μm diameter

• Ash4 : 21μm diameter

Exp1:

“w/o” Aeolus 

assimilation

IFS outputs
[ECMWF] 

Exp2:

“w” Aeolus 

assimilation

FLEXPART SRR Sensitivities - Methodology



FLEXPART SRR Sensitivities - Methodology

Inversion Runs with
PollyXT Lidar retrievals

➢ 79 independent releases above Etna at 
different heights (per 200m):
• 150k particles/each
• 1kg total mass

Repeated “w” and “w/o” Aeolus Assimilation

➢ 11 model levels:
• 2 km vertical resolution between 4 km & 

above 22 km a.g.l,
• a single layer between the surface & 4 km 

a.g.l. 
• Single layer from 22–50 km a.g.l. Determine the relationship between each emission 

height with each receptor height



FLEXPART SRR sensitivities above PANGEA-NOA station

from 18:30 to 21:30 UTC

Examples of Ash dispersion “w/w-o” from different Etna Release heights



• To determine the Mw & Mw/o we run 
different forward simulations with 
unity mass at 79 different emission 
heights. 

➢ “w” Aeolus SRR Sensitivity:

Source emissions observed above PANGEA 
on 12 March 2021 (18:30 to 21:30UTC) at 
heights 7.5-12km mostly deriving from 
Release heights between 6 to 12 km.

“Mw” Aeolus

FLEXPART SRR sensitivities above PANGEA-NOA station

from 18:30 to 21:30 UTC

yo = M x

Mw & Mw/o
(FLEXPART SRR w/w-o 

Aeolus)



Vertical profile of volcanic ash concentration above PANGEA-NOA station 

(from 18:30 to 21:30 UTC) after Inversion 

• The emission profile obtained in the inversion was then used

to simulate the transport of the plume.

• The observed and simulated mass concentration peaks are

well matched (the vertical shift of 1km is vanished after

inversion).

• Better source emissions provide better vertical agreement

between observations and simulation.

• Ash concentrations observed in the PollyXT lidar are not so well

reproduced with the model.
Preliminary Results

yo = M x

yo
m : observed 

concentrations 
from PollyXT Lidar

Mw & Mw/o

(FLEXPART SRR 
w/w-o Aeolus)

emission masses



Ongoing work and forthcoming actions 

➢ SRR Sensitivities “w” Aeolus provides reasonable Release heights for the observed emissions 

above PANGEA station on 12 March 2021 (18:30 to 21:30UTC).

➢ More accurate Etna emission rates obtained after inversion method in FLEXPART model “w” Aeolus

wind fields assimilation.

➢ The inversion algorithm “w” Aeolus data optimizes the vertical emission distribution.

➢ Model Ash mass concentration was not so well simulated with respect to the Lidar observations.

Next steps

Further improvements of our the inversion scheme could include some of the following:

➢ Minimize the difference in mass concentration between simulated and observed Ash mass.

➢ Considering the time dimension in the algorithm to optimize the temporal emission distribution.

➢ Include gravitational settling of aerosol.

➢ Validate the algorithm with more observations from other Lidar stations.
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