# **Converting NO**<sup>2</sup>, to NO<sup>2</sup>, emissions from NO<sub>2</sub> satellite observations



Sandro Meier<sup>1,2</sup>, Erik F. M. Koene<sup>1</sup>, Maarten Krol<sup>3, 4</sup>, Dominik Brunner<sup>1</sup>, Alexander Damm<sup>2, 5</sup>, and Gerrit Kuhlmann<sup>1</sup>

<sup>1</sup>Empa, Laboratory for Air Pollution / Environmental Technology, Switzerland

<sup>2</sup>Department of Geography, University of Zurich, Switzerland

<sup>3</sup>Meteorology and Air Quality, Wageningen University & Research, The Netherlands

<sup>4</sup>Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, The Netherlands

<sup>5</sup>Eawag, Swiss Federal Institute of Aquatic Science & Technology, Surface Waters – Research and Management, Switzerland

## 1. Introduction

- **Nitrogen oxides** (NO<sub>x</sub> = NO + NO<sub>2</sub>) are important air pollutants which are emitted during high-temperature combustion processes.
- Monitoring NO<sub>x</sub> emissions is crucial for assessing **air quality** and for providing **proxy estimates of CO<sub>2</sub> emissions**.

Jänschwalde

- Satellite observations, e.g., from the TROPOspheric Monitoring Instrument (TROPOMI), provide global coverage at high temporal resolution. While most  $NO_x$  is emitted as NO, satellites only measure  $NO_2$ , necessitating a **conversion to NO\_x**.
- Previous studies often applied a constant NO<sub>2</sub>-to-NO<sub>x</sub> conversion factor of about 1.3, derived assuming steady-state conditions [1].

Lipetsk

We developed a more realistic model for NO, to NO, conversion and applied it to TROPOMI data of 2020 and 2021 [2].

Bełchatów

# 2. Simulation of realistic NO, plumes

Plume-resolving simulations using MicroHH<sup>60</sup> Large Eddy Simulations with chemistry for the power plants Bełchatów (PL), Jänschwalde (DE), Matimba and Medupi (ZA), and a metallurgical  $_{40^{\circ}N}$ plant in Lipetsk (RU) [3].



**Figure 1**: Left: Example of simulated NO<sub>2</sub> and NO<sub>x</sub> columns from the MicroHH simulation of Matimba & Medupi at a resolution of 100 × 100 × 50 m. Right: Location of the simulated sources.

# 4. NO<sub>2</sub>-to-NO<sub>x</sub> conversion factors

|   | Along plume distance [km] with median wind speed = $5.7 \text{ m/s}$ |     |     |     |   |    |     |     |  |
|---|----------------------------------------------------------------------|-----|-----|-----|---|----|-----|-----|--|
| 0 | 50                                                                   | 100 | 150 | 200 | 0 | 50 | 100 | 150 |  |

# 3. Cross-sectional flux method



### **5. Validation with MicroHH data**



**Figure 3**: NO<sub>x</sub>:NO<sub>2</sub> ratios of the MicroHH time steps 8-14 UTC. The time since emission is computed from an effective wind speed at the source and the plume length.

# 6. Application to TROPOMI NO<sub>2</sub> data





**Figure 4**: Comparison of estimated  $NO_x$  emissions (a) and decay times (b) using the constant and time-dependent algorithms as well as the modelled  $NO_x$  fields.

# 7. Key findings & Conclusion

- Most of the NO<sub>x</sub> is emitted as NO  $\rightarrow$  complete titration of O<sub>3</sub> close to the source  $\rightarrow$  high NO<sub>x</sub>:NO<sub>2</sub> ratios.
- With increasing dilution and mixing of the plume  $\rightarrow$  accelerated oxidation of NO to NO<sub>2</sub>  $\rightarrow$  lower NO<sub>x</sub>:NO<sub>2</sub> ratios.

**Figure 5**: Estimated NO<sub>x</sub> emissions and their biases for TROPOMI data of the years 2020 and 2021.

### Contact

### Sandro Meier sandro.meier@empa.ch www.linkedin.com/in/sandro-meier98

### Acknowledgements

The research was funded by the Horizon Europe CORSO project (no. 101082194) with additional funding by the Swiss State Secretary for Education, Research and Innovation (SERI, no: 22.00422).

- Estimated NO<sub>x</sub> emissions using NO<sub>2</sub>-to-NO<sub>x</sub> conversion factors which depend on the time since emission **agree** with the estimates from the **modelled NO, fields** in MicroHH.
- **Biases** in estimated  $NO_x$  emissions from TROPOMI NO<sub>2</sub> observations are greatly reduced when using  $NO_2$ -to- $NO_x$  conversion factors which depend on the time since emission.
- **More simulations** covering a wider range of meteorological and trace gas background conditions are **needed to generalize the approach**.
- NO<sub>2</sub>-to-NO<sub>x</sub> conversion model **implemented in open-source Python library** for data-driven emission quantification (ddeq) [4]

#### References

[1] Beirle et al., Science 333, (2011) [2] Meier et al., in press, (2024) [3] Krol et al., in press, (2024) [4] Kuhlmann et al., GMD, (2024)

