

A Graph-Based Latent Variable Model for Probabilistic Weather Forecasting

Joel Oskarsson¹, Tomas Landelius², Marc Peter Deisenroth³, Fredrik Lindsten¹

¹Linköping University, Sweden

²Swedish Meteorological and Hydrological Institute

³University College London, United Kingdom

Probabilistic weather forecasting



- Currently:
 - Deterministic models
 - MSE loss

$$p(X^{t}|X^{t-1:t-2}, F^{t}) = \mathcal{N}\left(X^{t}|\hat{f}(X^{t-1:t-2}, F^{t}), \sigma^{2}I\right)$$

- Want:
 - Capture full distribution

$$p(X^{1:T}|X^{-1:0},F^{1:T})$$

Ensemble forecasting

Latent variable formulation

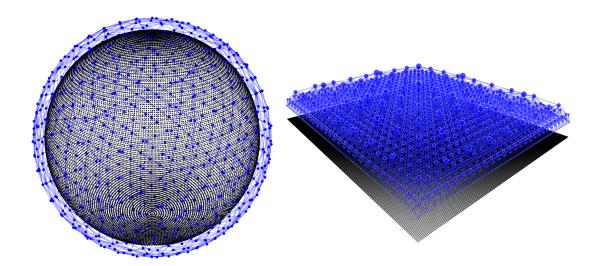
• Probabilistic + auto-regressive

$$p\big(X^t\big|X^{t-2:t-1},F^t\big) = \int \underline{p\big(X^t|Z^t,X^{t-2:t-1},F^t\big)} p\big(Z^t\big|X^{t-2:t-1},F^t\big) dZ^t$$
 Predictor Latent map

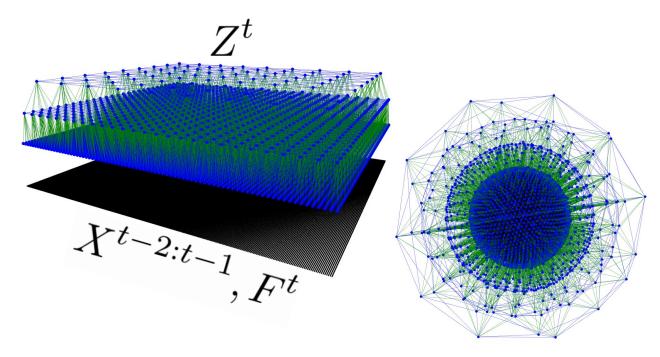
- Latent random variable Z^t
 - Captures uncertainty in single-step prediction

Graph-based weather forecasting

Flexible framework for both global¹
and regional forecasting²



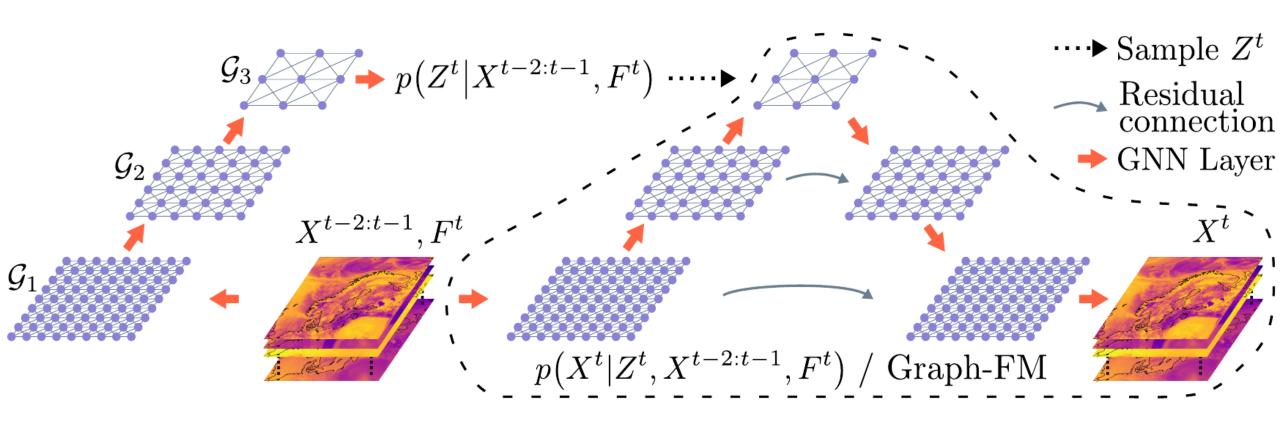
Hierarchical graph construction



¹ Keisler, R. (2022). Forecasting global weather with graph neural networks. arXiv preprint., Lam, R., et al. (2023). Learning skillful medium-range global weather forecasting. Science.

²Oskarsson et al. (2023). Graph-based Neural Weather Prediction for Limited Area Modeling. NeurIPS 2023 Workshop on Tackling Climate Change with Machine Learning.

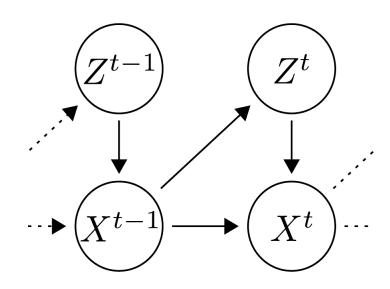
Graph-EFM: Graph-based Ensemble Forecasting Model



Graph-FM: Deterministic model using hierarchical graph

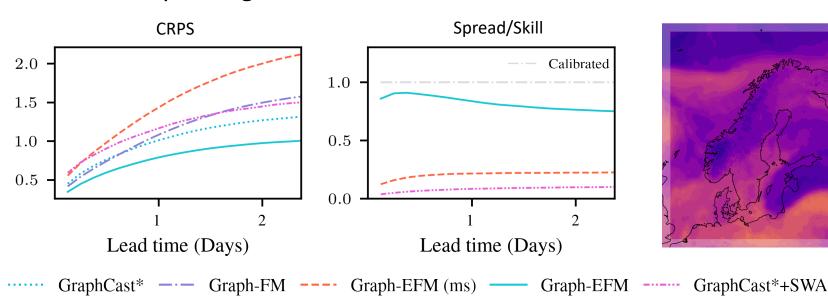
Training and sampling

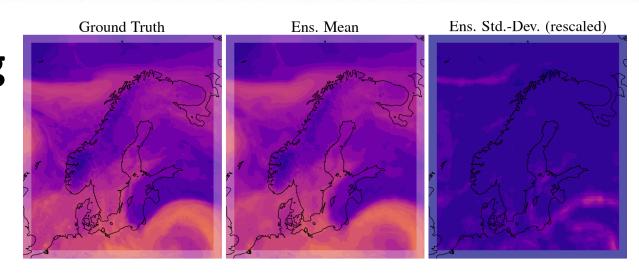
- Training
 - Maximize variational bound (ELBO)
 - First on single-step prediction
 - Finetuning on rollouts + using CRPS-based loss
- Sampling X^t
 - Requires single forward-pass
 - Contrast: Diffusion models

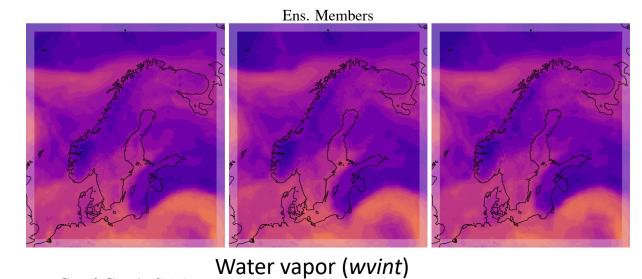


Results: Limited area modeling

- Surrogate model for forecasting Nordic region
 - Trained on dataset of 6000 forecasts
 - 57 h forecasts with 3 h time steps
 - 17 variables
- Boundary forcing



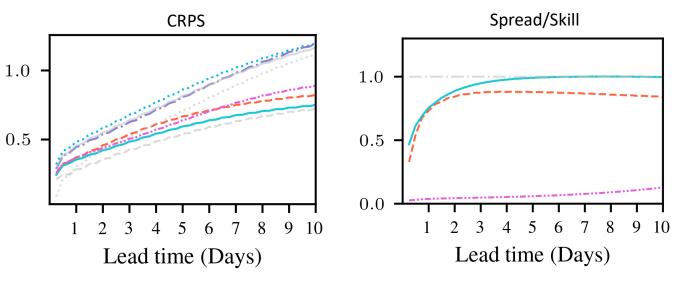




Calibrated

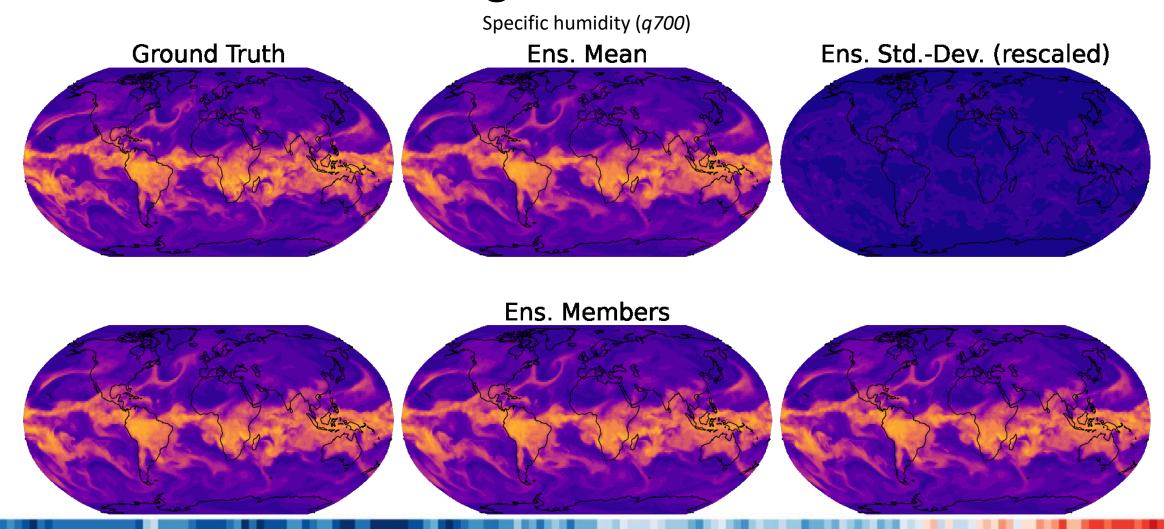
Results: Global forecasting

- ERA5 on 1.5° grid
- 10 day forecasts with 6 h steps
- 83 variables
 - o 5 surface
 - o 6 atmospheric × 13 levels



GraphCast — KeislerNet --- IFS-ENS

Results: Global forecasting



Graph-EFM: A Graph-Based Latent Variable Model for Probabilistic Weather Forecasting¹

Joel Oskarsson Tomas Landelius Marc Peter Deisenroth Fredrik Lindsten

