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Motivation: Vertically resolved CCN

⮚ Column-effective aerosol quantities may not be relevant to aerosol-
cloud interaction. 

⮚ The uncertainty of CCN-AOD parameterization is large, depending on:

▪ Aerosol Type

▪ Vertical distribution

▪ Humidity response of light scattering

▪ Spatiotemporal variability

Rosenfeld, et al. Science 2008

Stier, 2016: “…71 % of the area of the globe shows 

correlation coefficients between CCN0.2 % at cloud 

base and aerosol optical depth (AOD) below 0.5, i.e. 

AOD variability explains only 25 % of the CCN 

variance” – model-based, self-consistent.



⮚ For NASA AOS retrieval simulations, we developed a 
physics-based optimal estimation (OE) approach for 
lidar+polarimeter retrieval of speciated aerosol profiles.

⮚ Used aerosol reanalysis product to estimate the bulk 
hygroscopicity parameter for aerosol mixture. 

⮚ Applied κ-Köhler theory to calculate CCN concentration.

Limitations – AOS retrieval simulation “lessons learned”

▪ Great dependence on a priori information (aerosol size 

distribution and chemical composition) to retrieve CCN

▪ Computationally very expensive.

(Xu, F., Gao, L., Redemann, J., et al., 
2021)

Physics-based retrieval of CCN using lidar and polarimeter observations (Gao et al, AGU 2021)
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The Machine Learning  alternative

⮚ Collocate HSRL-2 and in-situ measured CCN 
from multiple campaigns.

✔ ACTIVATE, CAMP2EX, DISCOVER-AQ, ORACLES

⮚ Train neural networks for different sets of lidar 
observables (e.g., ATLID, NASA AOS).
✔ HSRL-2: 3β + 2α + 3δ
✔ HSRL-1: 2β + 1α + 2δ
✔ EarthCARE/ATLID: 1β + 1α + 1δ
✔ Simulated-Elastic-Backscatter (SEBL): 2β + 2δ 

⮚ Evaluate model prediction using in-situ 
measured CCN or ABS

✔ Correlation coefficient (R)
✔ Mean absolute error (MAE)
✔ Mean relative error (MRE)



Training the ML model

▪ Aircraft observations (lidar and in situ) from multiple campaigns

Lidar
observables

EXT355, EXT532, 
BSC355, BSC532, BSC1064, 

DEPO355, DEPO532, DEPO1064

Ancillary
Relative humidity (RH), 

Temperature (T)

In situ
CCN concentration 
at 0.4% SS (~9,900)

Absorption, ABS (~2,700)



MACHINE LEARNING - HOW TO DEAL WITH THE BLACK BOX…

Before machine learning:
▪ Remove data that has large uncertainties

▪ Lidar

✔ Negative lidar observables
✔ Aerosol depolarization ratio greater than 1

▪ In situ

✔ CCN below 10 cm-3

✔ ABS below 0.1 Mm-1

‘Garbage in, garbage out’ 
– computer science”

(https://xkcd.com/1838/)

Architecture setup:
▪ Training data: 70%, Testing data: 30%
▪ 10-fold cross validation
▪ Hyperparameters are tuned iteratively during the training using 

Bayesian optimization

Algorithm selection:
▪ Supervised regression learning problem with large number of 

numerical features. 
▪ Fully-Connected Neural Network (FCNN) regression model



Simulation of ML retrievals: CCN/ABS for full set of HSRL-2 observables (3β + 2α + 3δ )

CCN

ABS

WITHOUT Reanalysis WITH Reanalysis



Simulation of ML retrievals: CCN/ABS for EarthCARE/ATLID observables (1β + 1α + 1δ )

CCN

ABS

WITHOUT Reanalysis WITH Reanalysis



Mean relative error and fraction of predictions within 50% uncertainty

Significant Boost 
in retrieval 

performance for 
ATLID from 

adding  
reanalysis data  

(T, RH) as 
constraints



Simulation of ML retrievals: CCN/ABS for EarthCARE/ATLID observables (1β + 1α + 1δ )

CCN

ABS

WITHOUT Reanalysis WITH Reanalysis WITH 50% noise & Reanalysis



Test for ATLID observables with incomplete in situ data: limited range of training data

Provide only center 80% of CCN for training , but attempt prediction for full range of CCN pdf 

Grey-shaded areas 
excluded in training



Test for ATLID observables with incomplete in situ data: Discontinuous training data

Provide only intermittent of CCN for training, but attempt prediction for full range of CCN pdf 

Grey-shaded areas 
excluded in training



CCN/ABS for HSRL-2, HSRL-1 and EarthCARE/ATLID observables without reanalysis

CCN

ABS

HSRL-2: 3β + 2α + 3δ HSRL-1: 2β + 1α + 2δ ATLID: 1β + 1α + 1δ



CCN/ABS for HSRL-2, HSRL-1 and EarthCARE/ATLID observables with reanalysis

CCN

ABS

HSRL-2: 3β + 2α + 3δ HSRL-1: 2β + 1α + 2δ ATLID: 1β + 1α + 1δ
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CCN predicted by ML model for ER-2 flight across Southeast Atlantic - Aug. 26, 2016 



Mean Absolute (Relative) Error of CCN and ABS predictions for all and pristine conditions 

Predictor Data 
set →

ATLID observables
ATLID observables 
+ Reanalysis Data

ATLID observables + 50% noise 
+ Reanalysis Data

Predictor 
Indicator →

Mean Absolute Error (Relative)

All conditions
Pristine 

0<CCN<100
0<ABS<0.5

All conditions
Pristine 

0<CCN<100
0<ABS<0.5

All conditions
Pristine 

0<CCN<100
0<ABS<0.5

CCN [1/cm3] 213.1 (33.8%) 192.5 (345%) 94.2 (15.0%) 79.6 (142.5%) 148.5 (23.4%) 146.1 (268.4%)

ABS [10-6 m-1] 0.55 (32.0%) 0.29 (104.4%) 0.43 (24.9%) 0.26 (93.1%) 0.5 (28.3%) 0.31 (109.3%)



Conclusions 

1. We trained ML algorithms using airborne HSRL-2 observations collocated with in situ CCN (N≈9,900) 

and ABS (N≈2,700) measurements to predict CCN/ABS from lidar observables.

2. ML models have been adapted to many sets of future spaceborne lidar obs, incl. EarthCARE/ATLID, 

and tested with high-accuracy HSRL-2 data as input (overly optimistic, but necessary).

3. For ATLID observables, ML models predict CCN and ABS with mean relative errors of 30-35%. 

4. Adding reanalysis data (T, RH) boosts CCN errors to ~15% and ABS to ~25%.

5. Performance depends greatly on completeness of training data.

6. For pristine conditions, CCN/ABS retrieval errors are much higher (partly due to sparse training data).

7. Actual retrieval errors for spaceborne systems will depend on error characteristics.

8. Philosophically, the paradigm should use the airborne HSRL-trained ML models, as the low 

uncertainties provide maximum likelihood for ML models to discover non-linear and multi-variate 

correlations between lidar observables and other aerosol properties.

Novel Retrievals of Aerosol Microphysical and Radiative 

Properties from Lidar 



Collocation of lidar and in situ data

Predictors:
Lidar observables, 

reanalysis

Responses: 
Aerosol properties

Testing dataTraining data

ML-
training 
(FCNN)

Optimal model

Model 
evaluation 

using in situ 
data

Fig.S1: flowchart

70%   30%



Table1: List of lidar systems and aerosol variables used in this study
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Lidar system

Aerosol variables and wavelengths (nm)

Extinction Backscatter
Depolarization 

ratio

HSRL-2 (3β + 2α + 3δ) 355, 532 355, 532, 1064 355, 532, 1064

HSRL-1 (2β + 1α + 2δ) 532 532, 1064 532, 1064

Elastic-backscatter-lidar (2β + 2δ ) - 532, 1064 532, 1064

EarthCare-like-lidar (1β + 1α + 1δ) 355 355 355



New paradigm for aerosol 
retrievals from lidar 

General ML model

•Trained with collocated 

suborbital HSRL-2 (all 

l’s) & in situ data 

•Augmented with 

reanalysis data

•Tested with HSRL/in situ 

data

Optimized ML model

•Retrained for specific 

lidar observables

•Augmented with 

reanalysis data

•Tested with HSRL/in situ 

data

Application to ANY 

Lidar

•Applied to

•EarthCARE

•AOS

•Ground-based

•Airborne

•Tested with in situ ?

“Best case”

3β + 2α + 3δ

Accuracy of aerosol

retrievals depends on 

HSRL uncertainties & 

information content

Lidar-type specific, e.g.

1β + 1α + 1δ

Accuracy of aerosol

retrievals depends on 

HSRL uncertainties & 

information content

Lidar-system specific, e.g.

1β + 1α + 1δ

Accuracy of aerosol

retrievals depends on 

system-specific uncertainties 

& information content



Some deficiencies in climate models
Black/brown carbon and associated absorption

Brown et al., 2021

Aerosol Single Scattering Albedo (SSA)

𝑆𝑆𝐴 =
𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

𝑘𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
=

𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

𝑘𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 + 𝑘𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝑆𝑆𝐴 =
𝑘𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛−𝑘𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝑘𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛
= 1 -

𝑘𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝑘𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛

→ Treatment of 
carbonaceous
aerosol lifecycle 
(and its impact on 
absorption) is vastly 
different between 
models


