

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Manaaement

TROPOMI NO₂: a new method to identify unresolved features in DOAS residuals

Jos van Geffen^{1*}, Henk Eskes¹, Maarten Sneep¹, Pepijn Veefkind^{1,2}

Can we detect low-frequency structures in fit residuals ?

number of positive and negative fit residual values,

where a 'run' is a sequence of same-signed values

number of runs in terms of standard deviation σ

 $R_D < 0$ for fewer $\mid R_D > 0$ for more

• determines the deviation between actual and expected

Lake Siling

170.19 187.41

13.07

75.67

5.28

1.63

6.55

305

152

153

110

8.72

-4.99

35

153.50

land wate

8.08

70.55

3.35

1 21

3.60

305

155

150

138

153.46

-1.77

10

8.72

Saraha

desert

128.97

F

6.93

58.01

3.12

1.45

4.06

305

152

153

100

8.72

-6.14

33

153.50

Atlantic

ocean

146.12

9.52

60.65

3.95

1.66 , ×10⁻⁴ ×10⁺²

5.32

305

144

161

98

153.03

8.69

-6.33 sigma

33

unit

 $\mu \text{ mol}/\text{m}^2$

 $\mu \text{ mol}/\text{m}^2$

 $\mu \, \text{mol}/\text{m}^2$

 $\mu \text{ mol/m}^2$

Wald-Wolfowitz runs test ^{6,7} or **runs test** for short:

• checks a randomness hypothesis based on the

with thanks to Andreas Richter (University of Bremen)

The test

We added ³:

figure of fit residual

NO₂ SCD NO₂ SCD error

NO₂ GCD error

RMS of the fit

no. of spectral points

no of positive values

no. of negative values

no. of observed runs

no. of expected runs

 R_D = deviation from

 $R_L = \text{length of longest}$ observed run

no. of expected runs

sigma of that

 χ^2 of the fit

NO₂ GCD

• sign to the deviation R_D :

actual than expected runs

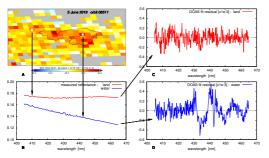
• length of the longest run R_L

The problem In NO₂ slant column (SCD) retrieval DOAS minimises χ^2 by adjusting fit parameters for known reference spectra: NO_2, O_3, O_2-O_2, H_2O_{vap}, H_2O_{liq}, Ring, plus polynomial (cf. ATBD³). This works well in most cases worldwide, but not in cases where other absorption or scattering effects occur. In those cases DOAS uses avialable fit parameters to compensate for missing reference spectra, thus possibly giving incorrect NO₂ SCDs, which leads to incorrect vertical columns (VCDs).

The main case — Lake Siling, Tibet^{4,5}

Two ground pixels over 'land' and 'water' (Fig. A):

- some 75 km apart \implies VCD^{land}_{strat} \approx VCD^{wate}_{strat}
- if no NO₂ sources \implies VCD^{land}_{trop} \approx VCD^{water}_{tro} albedo (*Fig. B*): A^{land}_{surf} > A^{water}_{surf} \implies


 $GCD_{total}^{land} > GCD_{total}^{wate}$ [GCD = SCD/AMFgeo = geometric column]

Observations (*Fig. A*) show: $GCD_{total}^{land} < GCD_{total}^{water}$ \implies <u>either</u> NO₂ source in the lake

 \underline{or} incorrect GCD $_{total}^{water}$, i.e. incorrect SCD

- Fit residual = measured modelled reflectance:
- 'land' (*Fig. C*) looks $OK \implies SCD \ OK$
- 'water' (Fig. D) shows strong low-frequency structures \implies reference spectrum missing \implies NO₂ SCD possibly incorrect !

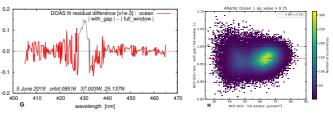
Same issue occurs over mulitple lakes in and around Tibet, but not e.g. over lakes in Mongolia

Recipe for the NO₂ data user

persistent unexpected tropospheric column values if then check the GCD, i.e. the actual measurements

unexpected GCD (& maybe other fit parameter) values if

- then check results of the runs test
- R_D and/or R_L show large values if
- then DOAS fit residual has remaining structures \implies the NO₂ SCD may be incorrect
 - \Longrightarrow contact data product leads to look at fit residual
- Note: large R_D and/or R_L values do not necessarily mean that the NO₂ SCD is incorrect

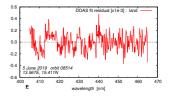

Bias in NO₂ over oceans

Tropospheric NO2 VCDs over oceans are small but are known to have a high bias in some areas. The fit residual of such ground pixels (Fig. F) shows a clear high peak around 430 nm and the NO₂ SCDs may thus be incorrect.

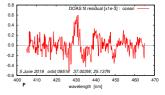
Performing a DOAS fit omitting spectral pixels between 428 and 433 nm (Fig. G: difference between absolute fit residuals) reduces χ^2 , RMS error and SCD error, and leads to a 5.6% lower SCD for this specific pixel.

For cloud-free pixels over the Atlantic ocean (Fig. H: ratio for scanlines with nadir latitude [10°:40°], 5 June 2019, orbit 08516) the GCD is reduced by about 4% on average, which in turn leads to lower VCDtrop values. Does this approach solve the bias, without causing problems elsewhere? To be investigated further.

- 1 KNMI $\,-\,$ Royal Netherlands Meteorological Institute, De Bilt, NL
- ² TU/Delft Delft University of Technology, Delft, NL
- 3 van Geffen et al., TROPOMI NO_2 ATBD v2.7.0, 2024



⁴ Kong et al., 2023: Nat. Geosci. 16, 474-477, doi: 10.1038/s41561-023-01200-8


- ⁵ Labzovskii et al., 2024: Nat. Geosci., in press = "arising matter" response to ref. 4
- ⁶ Barlow, 1989: "Statistics: a guide to the use of statistical methods in the physical sciences," Sect. 8.3.2
- ⁷ https://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test

Two other cases

Fit results of several pixels over land (Fig. E: over Sahara; similar seen over land elsewhere): clear broad but not high peak at 415-420 nm; no indication that the NO $_2$ SCD is incorrect.

Fit results of many pixels over ocean (Fig. F: Atlantic Ocean): clear high peak around 430 nm (due to VRS in water?) as well as some indication of small structures similar to Fig. D \implies NO₂ SCD possibly incorrect – see below for some remarks.

- Missing reference spectra lead to structures in the fit residuals
- The runs test provides additional independent information on
- the quality of DOAS fit residuals • As of v2.7.1 (Sept. 2024) the NO₂ data product contains: runs_deviation = R_D : deviation in terms of σ
 - runs_longest $= R_L$: length of longest run
- Negative (positive) R_D values indicate low (high) frequency structures left in the fit residual
- We cannot use runs test results to adjust the qa_value

Concluding remarks

- DOAS uses reference spectra to minimise χ^2 of fit residuals
 - \implies retrieved NO₂ SCD may be incorrect