

Status of Copernicus CO2M mission development

Anthropogenic greenhouse gas monitoring from space

Dr Yasjka Meijer European Space Agency (ESA) CO2M Mission Scientist

ATMOS-2024, Bologna, IT

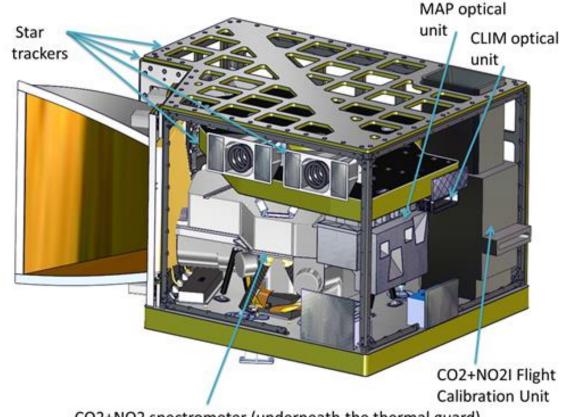
CO₂ Monitoring (CO2M) Mission

- 1. Detection of emitting hot spots
- 2. Monitoring the hot spot emissions
- 3. Assessing emission changes against local reduction targets
- 4. Assessing the national emissions and changes

System requirements → Mission Requirements → Implementation → Performance

NB mission requirements need to be met 3-sigma & anywhere in the swath

Today implementation status & performance will presented



Payload Implementation

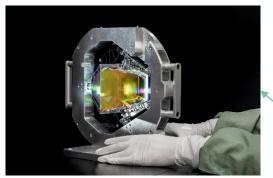
Payload Components

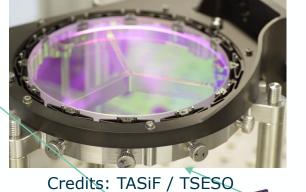
- **CO2 I**mager **(CO2I)**: 3 band (1 NIR, 2 SWIR) co-located push-broom imaging spectrometer
- NO2 Imager (NO2I): VIS band implemented as fourth band in CO2I instrument
- Multi-Angle Polarimeter (MAP) for aerosol observations
- CLoud IMager (CLIM) for low cloud & cirrus detection

CO2+NO2 spectrometer (underneath the thermal guard)

Credits: TASiF

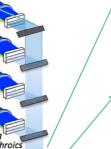
Credits:


LYNRED


Telescope

CO₂ & NO₂ Imager implementation (TAS-F)

Push-broom multi-band imaging spectrometer
Credits: IOF



Band Spectral range **VIS** 405-490 nm **NIR** 747-773 nm **SWIR-1** 1590-1675 nm **SWIR-2** 1990-2095 nm

Credits: TASiF

Common telescope with polarisation scrambler

Credits: TSESO

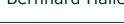
Credits: Media Lario

Credits: Optec

Bernhard Halle

Slit	110 Fibres are used to homogenise the scene; one per sample
Collimator	One reflective collimator, common for all bands
Band separation	3 Dichroic plates used in collimated beam
Diffraction grating	4 Prism-Grating-Prism assemblies
Imagers	Glass (VIS/NIR) and silicon (SWIR-1/SWIR-2); band-pass filters
Detectors	MCT CMOS detectors in SWIR;

Spectral radiance



CO2I & NO2I performance

Critical design review (CDR) is passed & integration has started

Performances are met with some minor points, but also with good exceptions:

Swath width266–276 km (orbit variation)

Spatial co-registration bands +++

Spectral ch. position variation very low

ISRF shape well-known

Polarisation sensitivity very low

Absolute radiometric accuracy +++

Residual offset very low

pernicus Multi Angle Polarimeter (TASiUK)

MAP Wavelength Band

Credits: TAS-UK

Multi-angle polarimeter (MAP) implementation:

VNIR-1

410 nm

443 nm

1 view = 6 spectral

channels

Compact push broom imager:

VNIR-2 **CDR**

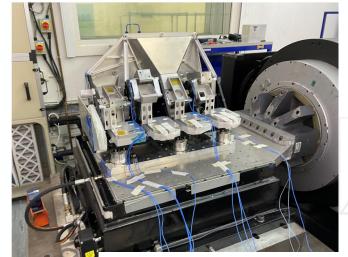
VNIR-3 490 nm

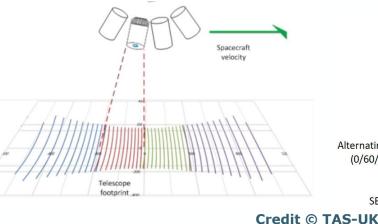
VNIR-4 555 nm

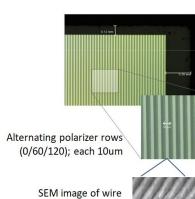
VNIR-5 670 nm

753 nm VNIR-6*

VNIR-7 865 nm

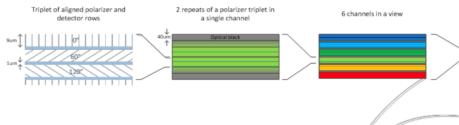

40 viewing angles $(+/-60^{\circ})$, plus 8 more @larger angles

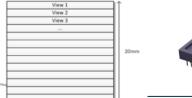

Spatial resolution: 4x4 km2 and sampling < 1x1 km2

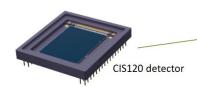

One focal plane assembly combining polarization & spectral filtering

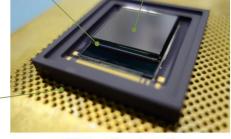
6 spectral bands in VIS and NIR (+1 for co-reg with CO2I)

3 polarisations (0°, 60°, 120°) sampled by μ -polarizers at detector pixel-level






Multispectral filter with ~24 views (Credit: Optics Balzers)


MAP OU STM in mechanical testing

>12 views in a telescope

MAP Focal Plane Assembly

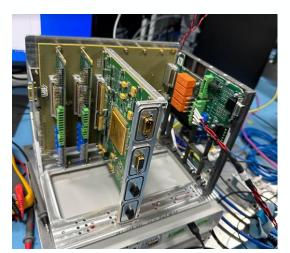
pernicus CO2M: Cloud Imager: CLIM (OIP Belgium)

Cloud Imager based on Proba-V

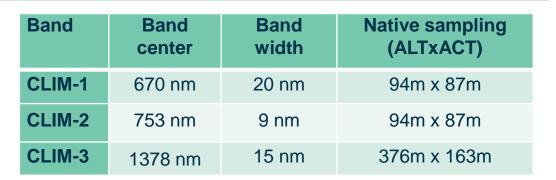
- Binning on-ground, specs @400m
- Three mirror telescope with Aluminium mirrors
- InGaAs Xenics (CLIM-3) & Si CCD Teledyne E2V (CLIM-1 & CLIM-2)

SSRD	Required	Compliance status
SNR @Lref	SNR>200	CLIM-1 > 542 (3sigma) CLIM-2 > 533 (3sigma)
		CLIM-3 >240 (3sigma)

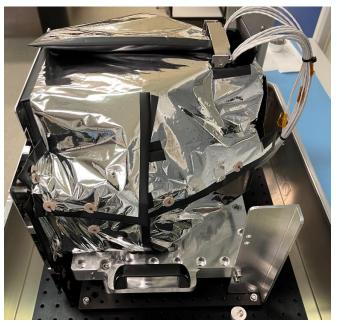
Credits: AMOS



Credits: OIP

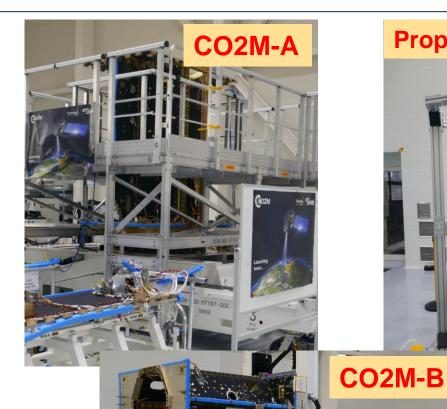

-		•	
			0
	_		
	808	0	
			. 6

CLIM OU PFM Telescope



CLIM EU EM1 boards Testing

Credits: OIP


CO2M Space Segment - key features

Propulsion module

Orbit	Altitude: 735 km, LTDN: 11:30 hr
Repeat cycle	Full coverage 11 days with 1 satellite improved to 5.5 days with 2 satellites
Lifetime	7.5 years, extendable to 12 years
Mass	~1.65 tons dry, plus 250 kg propellant
Launcher	Baseline: Vega-C, backup: Ariane 6

Credits: EMPA

Copernicus CO2M Mission – Status

Project status:

- Constellation of satellites
- Each satellite >266 km swath
- First and second satellite will have their Flight Acceptance expected mid 2026
- Third satellite → APPROVED!!

Copernicus data is made freely available to any person and organisation around the world

EUMETSAT performs operational data processing

Number of observations in one month with two satellites

Product	Spatial	Precision
CO ₂	4 km ²	0.7 ppm
CH ₄	4 km ²	10 ppb
NO ₂	4 km ²	1.5 10 ¹⁵ molecules cm ⁻²
Vegetation SIF	4 km ²	0.7 mW m ⁻² sr ⁻¹ nm ⁻¹
Aerosol params	16 km ²	0.05 AOD, 500 m LH

