

HELMHOLTZ

Foto: Ole Zeisung

Arctic glacier mass changes: insights gained through satellite gravimetry observations

Ingo Sasgen^{*}, Grit Steinhoefel^{*}, Caroline Kasprzyk^(*), Heidrun Matthes^{*}, Sebastian Westermann^{**}, Julia Boike^{*}, Guido Grosse^{*} *AWI, **University of Oslo

SESSION 4 - Glacier change observations for hydrological and sea-level rise assessments

GRACE/GRACE-FO annual balances

Sasgen et al. 2022, Nat. Clim. Change

Introduction

Sasgen et al. 2022, Nat. Clim. Change

Arctic glaciers and permafrost

Thermal regime of permafrost

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)

Courtesy: D. Schütze (AEI Hannover)

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)

Courtesy: D. Schütze (AEI Hannover)

Arctic glacier mass loss from gravimetry

GRACE/GRACE-FO mass change

2002-2023

Rank of mass loss

Smallest

Franz Josef Land Arctic Canada South Alaska North Slope Bor Novaya Zemlya

GRACE/GRACE-FO data

- CSR/GFZ/JPL combined solution
- Forward-modelling based inversion •
- Nine Arctic glacier systems
- Time period 2002–2023 \bullet
- 222 monthly solutions

Data submitted to Glacier mass balance intercomparison exercise (GlaMBIE), Zemp et al. submitted

Permafrost change from remote sensing

Remote sensing & modelling active layer thickness 2003

2003–2019

• ESA Climate Change Initiative

- CryoGRID ground thermal model
- Transient modelling of ground temperature
- Time period 2003-2019 (currently being updated)
- 1 km x 1 km estimates of annual maximum active layer thickness

https://climate.esa.int/en/projects/permafrost/, Dr. Sebastian Westermann (Univ. Oslo), AWI Potsdam

Active layer measurements in the field

Circumarctic Active Layer Monitoring (CALM)

- 185 field measurements > 60°N
- 57 with only one missing in time period 2003-2017
- Regional representation if correlated with CCI at location

→ 13 in situ records of permafrost change (regional representative)

Correlation mass balance & active layer thickn.

Factor analysis approach

Arctic impact index

Uncertainty: observation uncertainties + ensemble spread

Correlation of indices with atmosphere fields

Modes of atmosphere variability

Two modes covary with Arctic Impact indices

- EOF1 correlates with North Atlantic
 Oscillation and
 Greenland Blocking
 index
- EOF4/5 represents variations of higher spatial scale

Representing the indices by atmosphere modes

Regression of impacts observations onto index

Δ

О

Poster announcement

97

Next Generation Gravity Mission design: will new satellite constellations be able to resolve sub-monthly mass change events in Greenland? Mariia Usoltseva

Technical University of Munich

Next Generation Gravity Mission design: will new satellite constellations be able to resolve sub-monthly mass change events in Greenland?

Mariia Usoltseva, Ingo Sasgen

(mariia.usoltseva@tum.de)

Sasgen, I., Steinhoefel, G., Kasprzyk, C. *et al.* Atmosphere circulation patterns synchronize pan-Arctic glacier melt and permafrost thaw. *Commun Earth Environ* **5**, 375 (2024) https://doi.org/10.1038/s43247-024-01548-8

Statistics of impact index

Correlation with atmosphere variables: t2m

-0.5 0 v.v Correlation of mass balance with t2m

Project structure

Artic mass change & large-scale weather patterns 💿 🕬

Arctic Impact Indices

Type 1 (2003-219)

Standardized Factor 1

 $AIIn_F = f_1/std(f_1)$ fF - Factor analysis

Advantage:

Robustness

Disadvantage:

Requires continuous and congruent time series for all observation

Type 2 (2002-2023)

Significance and attribution to +/using Factor 1

Double-standardized observation time series directly

$$z = \sum \frac{x_p}{std(x_p)} - \sum \frac{x_n}{std(x_n)}$$

p: observations with significant positive loading *n*: observations with significant negative loading $AIIn_{S} = \frac{z}{std(z)}$ S – Selection of observations

Based on single set of discontinuous key observation

Less representative

Distribution of CALM measurements

Regression of index with principal components

Correlation of meridional means of ALT

Maximum and reference ensemble

ESA permafrost remote sensing / modelling produce CAV/

- Climate Change Initiative (CCI+), AWI
 Potsdam, Univ. Oslo
- CryoGRID ground thermal model (CCI+ version)
- Transient modelling of ground temperature – T(z,t)
- Time period 2003-2019 (currently being updated)
- 1 km x 1 km estimates of annual maximum active layer thickness

Development: Sebastian Westermann, Univ. Oslo (form. AWI)

In situ CALM observations

- 266 field measurements
- 185 north of 60°N (120 continuous permafrost)
- 57 with only one missing year 2003-2017
- Removed 1 record from Abisco area, Sweden
- Merged 4 co-located sites at Mt. Rodinka, Russia
- \rightarrow 53 in situ records of permafrost change

CCI+ remote sensing observations

- Interpolated to 5km x 5km
- Detrended
- Standardized anomalies
- → Regional/sectoral averages

To find CALM stations recording larger regional signals

- Correlation of CALM record with nearest grid point in CCI
- Adopt stations where correlation is significant
- Estimate uncertainty from CALM / CCI differences
- \rightarrow 13 in situ records likely carrying regional signals

Glacier mass and permafrost change

Atmosphere drivers

Modes

Covariations

GRACE/GRACE-FO mass change

In situ active layer thickness

Remote sensing active layer thickness

Factor analysis and derived impact index

Maximum: $\sum_{n} |\lambda_{1,n}|! = max$.

C: CALM in situ measurement

- P: CCI remote sensing sectorial / regional average
- G: GRACE/GRACE-FO glacier mass change

• Criterion of significance: $|\lambda_{1,n}| > 0.5$ & $|\lambda_{1,n}| - |\lambda_{2,n}| > 0.3$

Factor analysis

- Random set of 10 observations
- All five sectors have to be represented
- No constraint on data type
- Ensemble with $N \approx 14000$ members
- Significance screening

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)

Courtesy: D. Schütze (AEI Hannover)

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)

GRACE (2002-2017) GRACE-FO (2018 to present) GRACE-C (sched. 2028) MAGIC constellation (sched. 2032)