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What are we aiming for?
▶ Design smarter metrics to compare plumes from high-resolution satellite images (like Sentinel-5P) to simulation results to give less credit to errors due to meteorology.
▶ Use these metrics in an inverse method relying on atmospheric transport models to update emission inventories.

Categorisation of discrepancies between the images

Strategy
▶ Develop new non-local metrics for the comparison of plume objects.
▶ Remove the position error to have comparison less sensitive to meteorology.
▶ Detection and segmentation of plume objects are discussed in Joffrey’s poster.

Compared metrics
▶ Usual metric integrated over the image:

d(A,B) = 2

√∫
(A(x)− B(x))2dx. (1)

▶ Usual metric with upstream position correction:

dF(A,B) = 2

√∫
(A(x)− B(F(x)))2dx, (2)

where F is the best plane transformation that minimise the distance.
▶ Wasserstein metric:

w(A,B) = 2

√
inf
T

∫
∥x− T (x)∥2Â(x)dx, (3)

where T is the best tranport plan that transport the normalised B̂ to Â.
▶ Wasserstein metric with position correction:

wF(A,B) =
2
√

Tr((Cov(Â)12 − Cov(B̂)12)2), (4)

assuming plumes are Gaussian-like histograms.

Evaluation over meteorology criteria
▶ Meteorology changes are represented by changes in: mean wind direction, mean wind

intensity, standard deviation of the wind direction and standard deviation of the wind
intensity.

▶ r is the Pearson correlation.
▶ The chosen example is represented by the

red pentagon.
▶ Both corrected metrics lead to less

sensitivity to mean meteorology changes.
▶ The corrected metrics are mainly driven

by changes in the standard deviation of
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What is a non-local metric?
▶ local ∼ pixel-wise comparison and thus consider only the cost of amplitude differences

pixel by pixel leading to the double penalty issue.
▶ non-local ∼ histogram comparison which consider the cost of the displacement and the

change in amplitude to match the two histogram.
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Example of discrepancies map seen by the usual local metric (dl2) and the non-local metric (dF)

What is the double penalty issue?
▶ When two identical pixels are shifted from each other, pixel-wise comparison will

penalise the shifting by twice the amplitude of the pixels.
▶ Conversion of any position error into amplitude error.

Comparison of Gaussian histograms shifted from each other. The discrepancies maps lead to the same dl2
value.

Which images are compared?

▶ Pulsating power plant simulated over 14
days with a 2 km×2 km resolution[1].

▶ 100×100 pixel images centered on the
power-plant.

▶ We conserved 2208 pairs of CO2 plumes
(A(x), B(x)) where only the meteorology
change.

Simulated domain [2]

Synthesis
▶ Position correction in the new metrics lead to comparison that are less sensitive to change in the mean direction of the wind and/or its intensity.
▶ Small-scale meteorology still impacts the comparison between the plumes through the shape error.
▶ Wasserstein distance is not subject to the double penalty issue.
▶ Optimal transport metrics need to use normalised images and thus an additional term representing the scaling error is required for the inversion.
▶ These results are submitted to the AMT journal.
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