

ESA UNCLASSIFIED – For ESA Official I

PROGRAMME OF THE EUROPEAN UNION

co-funded with

7th Sentinel-3 Validation Team Meeting 2022

18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

Thermal Infra-red Product Inter-comparison and Validation with FRM Radiometers F. Göttsche¹, W. Wimmer², M. Martin¹ and L. Perez-Planells¹ ¹Karlsruhe Institute of Technology (GER) & ²National Oceanography Centre (UK)

→ THE EUROPEAN SPACE AGENCY

FRM: Fiducial Reference Measurements

According to the Sentinel-3 Validation Team, FRM must at least

Document evidence of its traceability to SI

Be independent from the satellite geophysical retrieval process

Detail an uncertainty budget for the instrumentation and measurement process for the range of conditions it is used over.

Adhere to community agreed measurement protocols & management practises.

7th Sentinel 3 Validation Team Meeting 2022 18-20 October 2022 | ESA-ESRIN | Frascati (Rm), Italy

KIT's validation instrument: Heitronics KT15.85 IIP

- chopped, precision radiometer: stability better than 0.12% per year
- narrow band 9.6µm 11.5µm
- better than ±0.3K absolute accuracy
- narrow view angle: 8.5°

· = ⅠⅠ ▶ = = + ⅠⅠ ■ ≝ = ⅠⅠ ⅠⅠ = = = = ₩ ■ ■ ■ ■ ■ ₩ = ₩ = ₩

KT15.85 IIP uncertainty budget

Uncertainty Contribution	Type A Uncertainty in Value / %	Type B Uncertainty in Value / (appropriate units)	Uncertainty in Brightness temperature K
Repeatability of measurement	0.12		0.024
Reproducibility of measurement	0.12		0.024
Primary calibration		0.250 K	0.250
Water emissivity		0.1%	0.067
Water surface "roughness"		2.0 m/s	0.033
Angle of view to nadir		2.5 °	0.117
Linearity of radiometer		0.053 K	0.053
Drift since last calibration		0.176 K	0.176
Temperature resolution		0.035 K	0.035
Ambient temperature fluctuations		0.035 K	0.035
Atmospheric absorption/emission		0.035 K	0.035
Down-welling sky radiance		0.004 K	0.004
RMS total	0.173		0.347

Left: **KT15.85 IIP** uncertainties. From FRM4STS intercomparison experiment 2016 (Wraysbury reservoir, UK)

opernicus

EUMETSAT

PROGRAMME OF THE EUROPEAN UNION

Infrared Sea Surface Temperature Autonomous Radiometer (**ISAR**): self-calibrating radiometer with two internal reference blackbodies, accuracy of ±0.1 K

· e e sa

co-funded with

Bodensee-Schiffsbetriebe (BSB) car ferry 'Friedrichshafen'

= || | | = == + || | = := = || || || = = = := := || || || = := := !+|

EUMETSAT

opernicus

ROGRAMME OF THE

co-funded with

· eesa

Perform an inter-comparison experiment over several weeks between Heitronics KT15.85 IIP (KIT) and ISAR (UoS) on Lake Constance

- Acquire an in-situ data set of Lake Water Surface Temperature (LWST) & Sea Surface Temperature (SST) from the two FRM radiometers
- Inter-compare in-situ surface temperatures (ST) and uncertainties
- Compare satellite ST products (focus on Sentinel-3) with in-situ ST

Lake Constance Radiometer Inter-comparison Experiment

September 2020

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND

PROGRAMME OF THE EUROPEAN UNION

· e e sa

co-funded with

EUMETSAT

opernicus

In-situ SST (ISAR) & LWST (KT15.85 IIP) for Lake Constance

이 바라 가 나는 것 같아. 말 것 같아. 말 것 같아. 말 같아.

In-situ LWST (KT15.85 IIP) versus in-situ SST (ISAR)

• 676 valid matchups (07.-23. Sep. 2020)

PROGRAMME OF THE

EUROPEAN UNION

• Excellent agreement between the two time-series of in-situ surface temperatures

opernicus

EUMETSAT

- Average deviation between KT15.85 IIP and ISAR was -0.085 K \pm 0.065 K
- KT15.85 IIP uncertainty budget for water bodies can be refined, i.e. reduced

■■ ▶ == + ■ + ■ == == = ■ ■ ■ == == ■ ■ ■ == ++

· eesa

co-funded with

SST and LST satellite products versus in-situ LWST

Sensor	Satellite(s)	Spatial resolution	Satellite operator
ST product(s)		Data format	Data source
SLSTR	Sentinel-3 (A,B)	1 km	Copernicus / ESA
WCT		netCDF	EUMETSAT (internal)
WST		netCDF	EUMETSAT (CODA)
SL_2_LST		netCDF	Scihub (Uni Leicester)
MODIS	Terra / Aqua	1 km	NASA
LST (MOD21)		HDF-EOS	Earthdata
SST (MODIST/A)		netCDF	Earthdata
AVHRR	MetOp (B,C)	1 km	EUMETSAT
SST (OSI-204)		netCDF	OSI SAF
LST (LSA-002)		HDF-5	LSA SAF
VIIRS	Suomi NPP	1 km	NOAA / NASA
SST		netCDF (GHRSST)	Earthdata
LST (VNP21)		netCDF	Earthdata

PROGRAMME OF THE EUROPEAN UNION

opernicus

10

Preparation of satellite ST product subsets into netCDF files

51 x 51 pixel subsets of ESA operational SLSTR Level-2 LST product

S3A_SL_2_LST_20200909T**093541** S3A_SL_2_LST_20200909T**205835**

Daytime validation results for investigated SST & LST products

PROGRAMME OF THE EUROPEAN UNION

12

· e esa

co-funded with

EUMETSAT

opernicus

Extended SLSTR LST & SST validation (Apr 2020 - Jun 2021)

- Cloud-filtering (probability & flag):
 339 → 57 match-ups
- LST: mean bias +0.2 K, SD 0.6 K (median bias +0.4 K)
- WST: mean bias -0.2 K, SD 0.3 K

Legend:

- Whiskers: minima & maxima
- Orange line: median
- Black star: mean
- Box: lower & upper quartile ranges
- Circles: LST outliers (VZA \approx 50°)

PROGRAMME OF THE EUROPEAN UNION EUROPEAN UNION

Summary & Conclusions

Successful bilateral field campaign during COVID-19 pandemic: 17 days of valid in-situ measurements

- Excellent performance of KT15.85 IIP (KIT) vs ISAR (UoS)
- KT15.85 IIP uncertainty budget for water bodies ≈ 0.2 K
- SLSTR WST product performs well over Lake Constance
- Benefit of long-term monitoring: more reliable statistics

