

Investigating the large rise of atmospheric CH₄ in 2020 using TROPOMI observations and TOMCAT chemical transport model

Emily Dowd

School of Earth & Environment, University of Leeds

Email: <u>eeed@leeds.ac.uk</u>

Twitter: @emily_dowd_

Co-Authors:

Christopher Wilson, National Centre for Earth Observation, School of Earth & Environment, University of Leeds **Martyn Chipperfield**, National Centre for Earth Observation, School of Earth & Environment, University of Leeds **Emanuel Gloor**, School of Geography, University of Leeds **Robert Parker**, National Centre for Earth Observation, School of Physics & Astronomy, University of Leicester **Hartmut Boesch**, National Centre for Earth Observation, School of Physics & Astronomy, University of Leicester

Why is methane important?

- Second most important greenhouse gas after CO₂
- Anthropogenic emissions have contributed an extra 23% to radiative forcing in the troposphere
- Variations of global methane are poorly understood

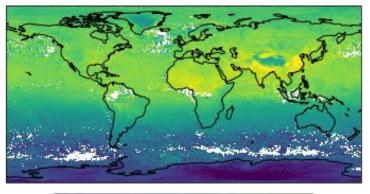
 Sources & Sinks

 Wetlands
 Agriculture

 194[155-217] Tg CH₄ yr⁻¹
 227[205-246]

Agriculture & Waste 227[205-246] Tg CH₄ yr⁻¹

Fossil Fuels 108[91-121] Tg CH₄ yr⁻¹ **Biomass Burning** 28[25-32] Tg CH₄ yr⁻¹

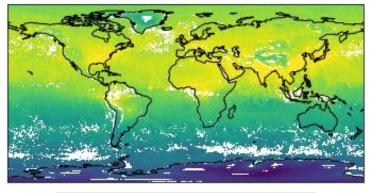

UNIVERSITY OF LEEDS

Total Flux = 596[572-614] Tg CH₄ yr⁻¹

Main sink of methane is the hydroxyl radical(OH)

TROPOMI

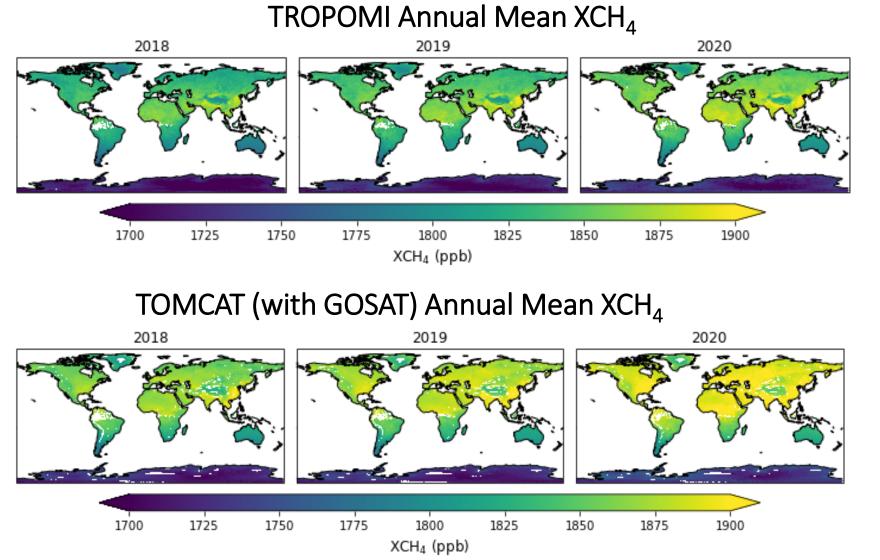
2020


1700 1725 1750 1775 1800 1825 1850 1875 1900 XCH₄ (ppb)

2020 mean column CH₄ from TROPOMI

- O. Schneising et al. (2019) retrieval algorithm
- 0.5° x 0.5° grid
- Daily data aggregated to monthly mean 2018-2020

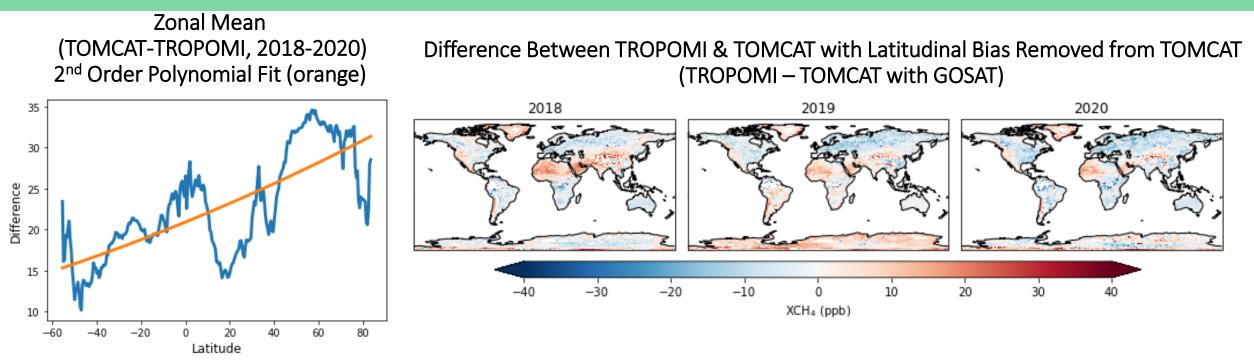
TOMCAT


2020

1700 1725 1750 1775 1800 1825 1850 1875 1900 XCH₄ (ppb) 2020 mean column CH₄ from TOMCAT with TROPOMI averaging kernels.

- TOMCAT is a 3D chemical transport model
- Surfaces fluxes were taken from inversions which assimilated GOSAT satellite retrievals and surface observations
- We have done a separate inversion which assimilated NOAA surface observations
- Model was run at 2.8° x 2.8°, 60 vertical levels, annually repeating offline
 OH fields
- TROPOMI averaging kernels applied to both simulations

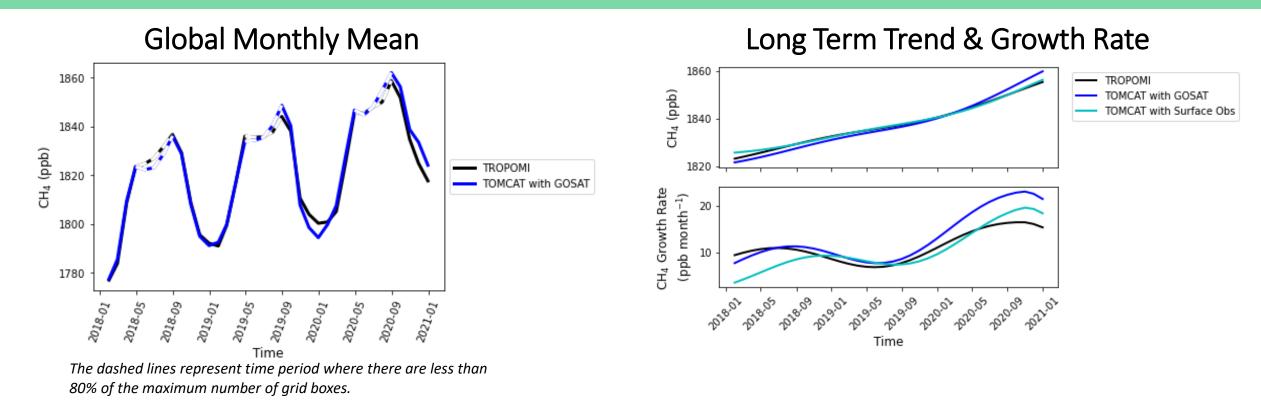
TROPOMI & TOMCAT 2018-2020



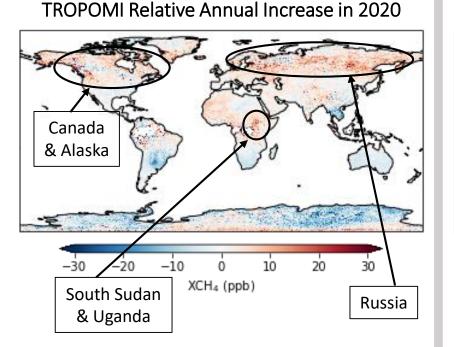
- XCH₄ increasing from 2018-2020
- Areas of high CH₄ include northern Africa, India, Bangladesh and China

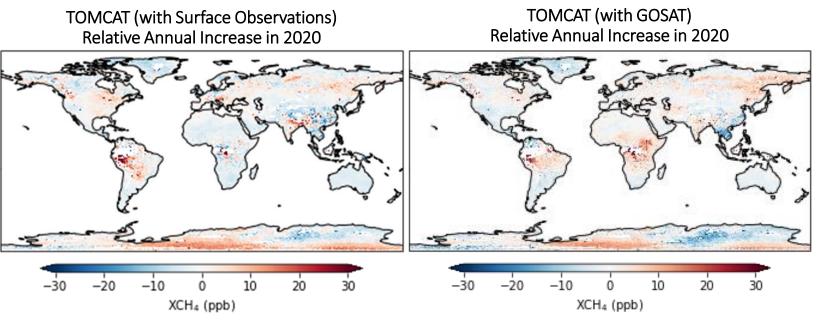
- TOMCAT overestimating total column CH₄
- Areas of high CH₄ include northern Africa, India, China and North America

UNIVERSITY OF LEEDS


TOMCAT Latitudinal Bias Correction

- Global mean bias correction shows latitudinal bias
- Calculated 2nd order polynomial fit for latitudinal bias correction
- TOMCAT still overestimates but biases are now always within ±15 ppb instead of ±30 ppb largest biases remain in high albedo areas
- The latitudinal bias correction has been applied TOMCAT in the following analysis


Global CH₄

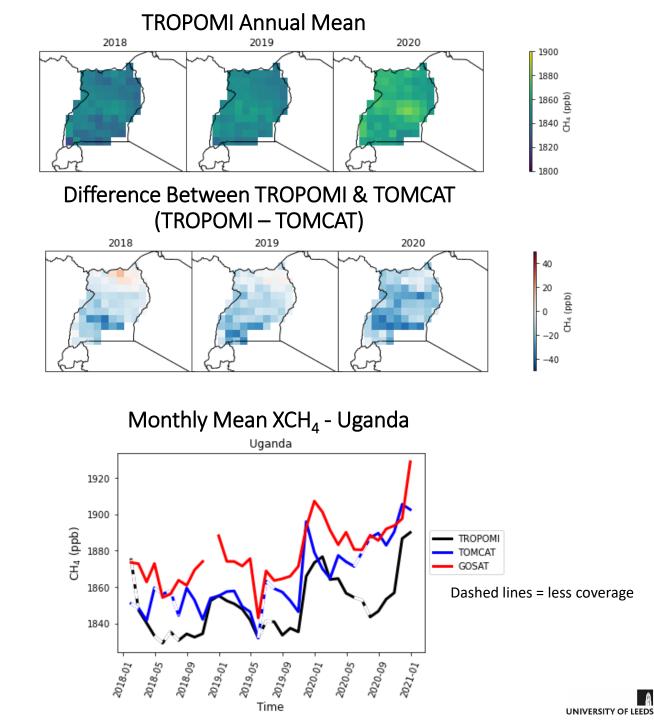

- The model captures the seasonal cycle and long term trend of CH₄ well when compared with TROPOMI
- The global annual increase for TROPOMI is 14.9 ppb and for GOSAT is 17. 1 ppb in 2020
- NOAA observed an annual increase of 15.3 ppb in 2020
- The global annual increase for TOMCAT with Surface Observations is 15.8 ppb and TOMCAT with GOSAT is 19.7 ppb in 2020

UNIVERSITY OF LEEDS

What is driving the large increase in 2020? 2020 Annual Increase Relative to the Global Mean Annual Increase

- Latitudinal variation in annual increase
- Most variations in the Northern
 Hemisphere driving the increase in 2020

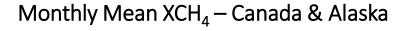
- TOMCAT with Surface Observations does not display relative increases shown by
 TROPOMI well
- TOMCAT with GOSAT:
 - Displays the large increase over Africa and Russia
 - Displays increase in Russia but not as large as TROPOMI
 - Does not display large rise over Canada

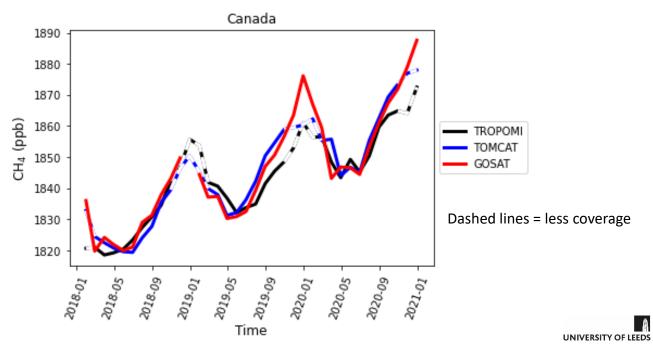


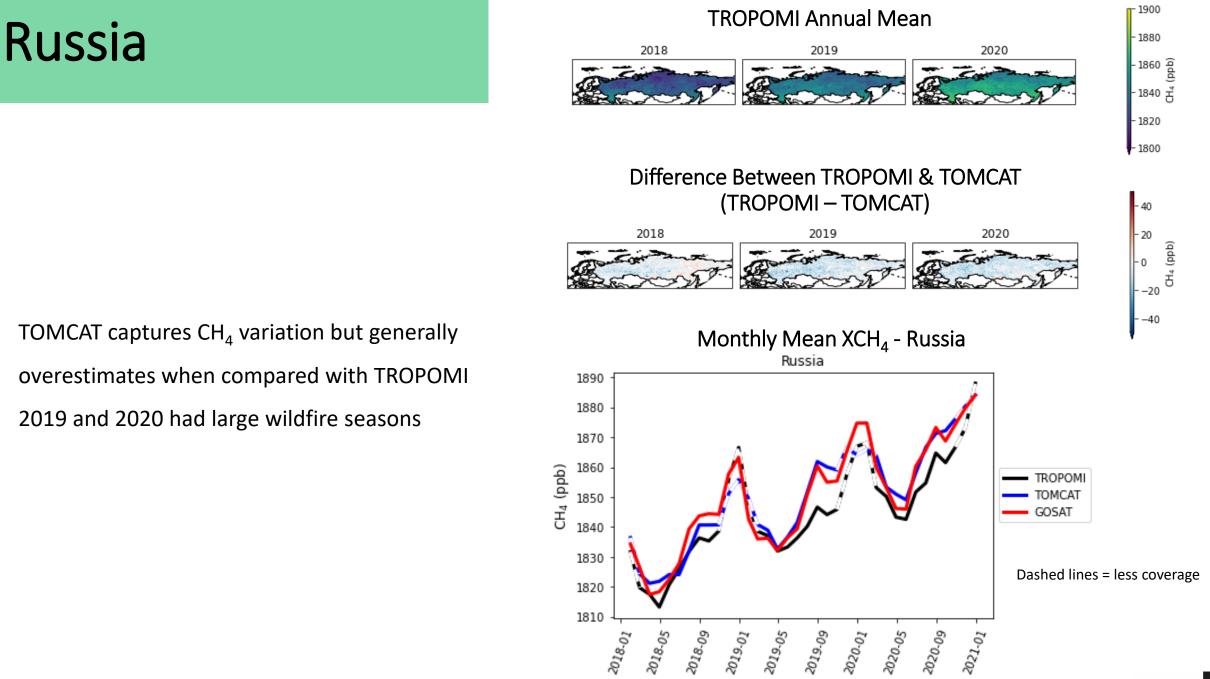
South Sudan

- **TROPOMI** Annual Mean 2018 2020 - 1900 1880 - 1860 (q -1840 ਨੂੰ - 1820 - 1800 **Difference Between TROPOMI & TOMCAT** (TROPOMI - TOMCAT)2018 2019 2020 40 CH₄ (ppb) -20 -40Monthly Mean XCH₄ - South Sudan South Sudan 1940 1920 CH₄ (ppb) 1900 TROPOMI TOMCAT GOSAT 1880 Dashed lines = less coverage 1860 1840 2018.05 2020.09 2018.01 ^{2018.09} 2020.05 2019.01 2021-01 2019.05 2020.01 2019-01 Time UNIVERSITY OF LEEDS
- TROPOMI shows large increases in CH₄ September,
 October & November (SON) in 2019 and 2020
- Pandey et al. (2020) and Parker et al. (2020) find that
 WetCharts does not capture Sudd seasonal cycle
- TOMCAT with GOSAT assimilated, TROPOMI and GOSAT all show a large rise in SON 2020.
- Lunt et al. (2021) large enhancements of CH₄ during large positive anomalies in the 2019 short rains season (October-December) and these continued into 2020

Uganda


- TROPOMI shows large increases in CH₄ between November-January, with largest increase in 2020
- Lunt et al. (2021) found a positive precipitation anomalies OND 2019
- High release rates from dam controlling Lake
 Victoria outflow in 2020




Canada & Alaska

- Higher concentrations in the east where more wetlands are situated
- TOMCAT captures CH₄ well when compared with TROPOMI
- Islam et al. (2021) found, using GOSAT, that wetlands and oil and gas emissions are controlling the growth rate during 2009-2019 in western Canada
- Scarpelli et al. (2021) produced a gridded inventory of anthropogenic emissions and eastern Canada emissions are mostly from livestock along the US/Canadian border

TROPOMI Annual Mean 1900 1880 2018 2019 2020 1860 (a -1840 ਸ਼ੁੱ 1820 1800 TROPOMI – TOMCAT 40 2018 2020 2019 20 -20 -40

Time

- TOMCAT captures CH₄ variation but generally ۲ overestimates when compared with TROPOMI
- 2019 and 2020 had large wildfire seasons ٠

- Large global annual increased in 2020 shown by NOAA surface observations (15.27 pbb) and TROPOMI (14.87 ppb)
- GOSAT has a larger annual increase of 17.1 ppb and TOMCAT with GOSAT (with TROPOMI averaging kernels) is 19.7 ppb
- TOMCAT with GOSAT captures spatial distribution of relative annual increase shown by TROPOMI
- TOMCAT shows a latitudinal bias when compared with TROPOMI
- Areas with large annual increase in 2020 include: South Sudan, Uganda, Canada & Alaska and Russia
- TOMCAT captures the large concentrations in 2020 over South Sudan but has a weaker seasonal cycle
- From the selected areas it seems wetlands are a large contributor to the increase in CH_4 during 2020 Next Steps
- Develop a nested grid model for TOMCAT in order to do high resolution comparisons with TROPOMI

Get in Contact: Emily Dowd

Email: <a>eeed@leeds.ac.uk Twitter: @emily_dowd_

UNIVERSITY OF LEEDS