

Session 15: Arctic Navigation - Practical Application of Sea Ice Information in Current and Future Maritime Operations

2024 European Polar Science Week

3-6 September 2024 | The Black Diamond | Copenhagen, Denmark

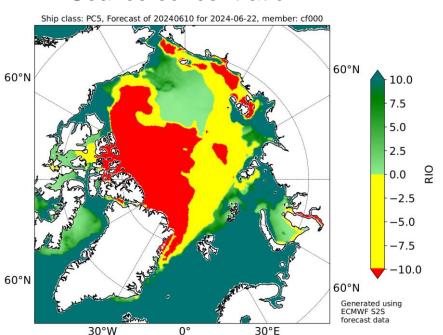
Deriving novel IMO Polar Code POLARIS sea ice risk forecasts from models to mitigate sea ice hazards

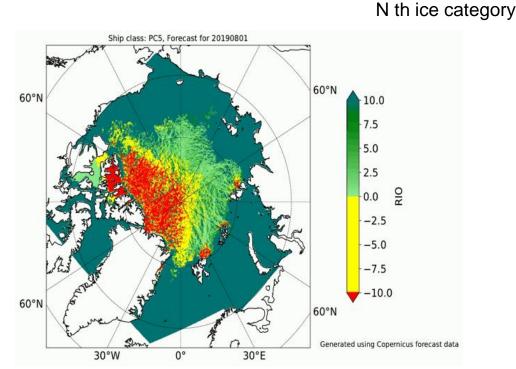
- Presenter: Xinfang Zhang(FMI) xinfang.zhang@fmi.fi
- Affiliation: Finnish Meteorological Institute
- Date: 5.9.2024

Introduction on Polar code and POLARIS

- Polar code
 - goal based international code
 - for ship operating in polar waters
 - maritime safety
 - environmental protection
 - built on IMO conventions SOLAS and MARPOL
 - into force January 1st 2017
- POLARIS(the Polar Operational Limit Assessment Risk Indexing System)
 - o operational risk management guidance under polar code
 - assessing ship operational capabilities and limitations caused by sea ice
 - AIM: avoid hazardous conditions
 - o based on an evaluation of the level of risk imposed to ship by ice condition and ship's assigned ice class
 - Usage
 - voyage planning
 - real-time decision making

RIO(RISK INDEX OUTCOME)




a single numerical value to represent operational risk

Risk Index Values

$$RIO = C_1 \cdot RIV_1 + C_2 \cdot RIV_2 + \dots + C_n \cdot RIV_n$$

Sea ice concentration

Novel algorithm

Sithick only

Mapping available sea ice data to POLARIS ice types + ship class > RIV

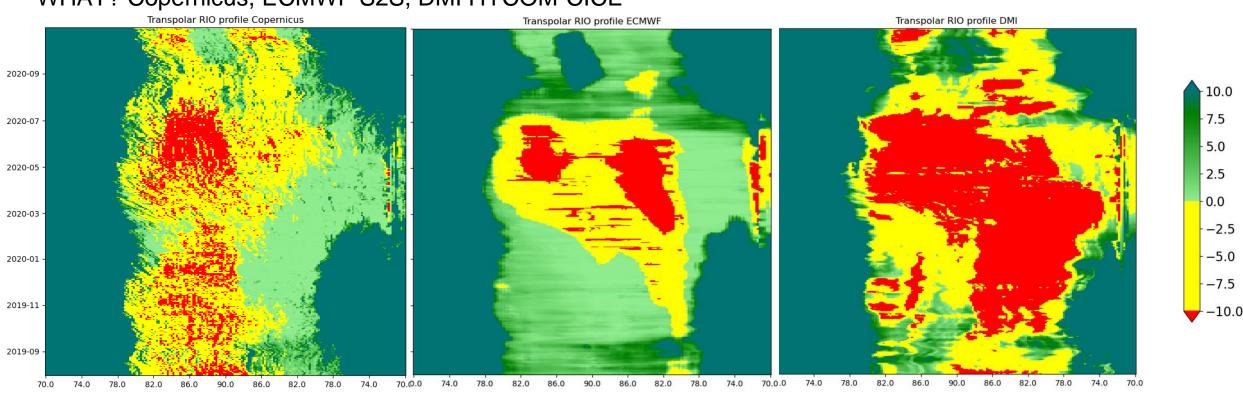
3 Sithick +siage

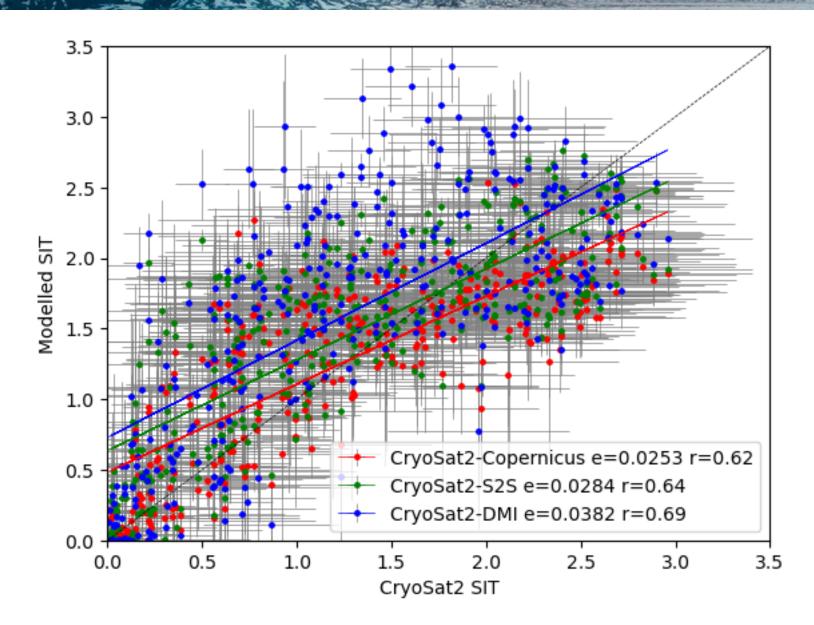
1. Sittlick Offig		۷. ا	11111CK +515a1	3. Sittlick +Slage				
POLARIS ice type	Ice thickness	POLARIS ice type	Ice thickness	Ice salinity	POLARIS ice type	Ice thickness	Ice age	
Ice-Free	0 cm – 1 mm	Ice-Free	0 cm – 1 mm	any	Ice-Free	0 cm – 1 mm	any	
New Ice	1 mm – 10 cm	New Ice	1 mm – 10 cm	any	New Ice	1 mm – 10 cm	any	
Grey ice	10 cm – 15 cm	Grey Ice	10 cm – 15 cm	any	Grey Ice	10 cm – 15 cm	any	
,	15 cm – 30 cm	Grey White Ice	15 cm – 30 cm	any	Grey White Ice	15 cm – 30 cm	any	
Grey white ice		Thin FY 1st stage	30 cm – 50 cm	any	Thin FY 1st stage	30 cm - 50 cm	any	
Thin FY 1st stage	30 cm - 50 cm			•	Thin FY 2nd stage	50 cm – 70 cm	any	
Thin FY 2nd stage	50 cm – 70 cm	Thin FY 2nd stage	50 cm – 70 cm	any	Medium FY < 1 m	70 cm – 100 cm	any	
Medium FY < 1 m	70 cm – 100 cm	Medium FY < 1 m	70 cm – 100 cm	any	Medium FY > 1 m	100 cm – 120 cm	any	
Medium FY > 1 m	100 cm – 120 cm	Medium $FY > 1 \text{ m}$	100 cm – 120 cm	any	Thick FY	120 cm – 200 cm	0 - 1	
		Thick FY	$\frac{120 \text{ cm} - 200 \text{ cm}}{}$	$\frac{< 5 \text{ ppt}}{}$	Thick SY	120 cm – 200 cm	1 - 2	
Thick FY	120 cm – 200 cm	Canand Van Inc	120 cm – 200 cm	>5 ppt	Thick MY	120 cm – 200 cm	> 2	
Second year Ice	200 cm - 250 cm	Second Year Ice	200 cm – 250 cm	$< 5 \mathrm{\ ppt}$	Second Year Ice	200 cm – 250 cm	0-2	
MY < 2.5m	250 cm - 300 cm	MY < 2.5 m	${200 \text{ cm} - 250 \text{ cm}}$	> 5 ppt	MY < 2.5 m	200 cm – 250 cm	> 2	
MY	> 300 cm	MY	>250 cm	any	MY < 2.5 m	>250 cm	any	
1						l .	•	

2 Sithick +sisal

-	1	A
	0	
1	European Commission	

Polaris ice Type	PC1	PC2	PC3	PC4	PC5	PC6	PC7	1ASuper	1A	1B	1C	Noclass
Open Water	3	3	3	3	3	3	3	3	3	3	3	3
New Ice	3	3	3	3	3	2	2	2	2	2	2	1
Grey Ice	3	3	3	3	3	2	2	2	2	2	1	0
Grey White Ice	3	3	3	3	3	2	2	2	2	1	0	-1
Thin FY Ice, 1st stage	2	2	2	2	2	2	1	2	1	0	-1	-2
Thin FY Ice, 2nd stage	2	2	2	2	2	1	1	1	0	-1	-2	-3
Medium FY Ice,<1 m	2	2	2	2	1	1	0	0	-1	-2	-3	-4
Medium FY Ice	2	2	2	2	1	0	-1	-1	-2	-3	-4	-5
Thick FY Ice	2	2	2	1	0	-1	-2	-2	-3	-4	-5	-6
Second Year Ice	2	1	1	0	-1	-2	-3	-3	-4	-5	-6	-7
Light MY Ice, <2.5 m	1	1	0	-1	-2	-3	-3	-4	-5	-6	-7	-8
Heavy MY Ice	1	0	-1	-2	-2	-3	-3	-4	-5	-6	-8	-8


Arctic Transpolar Route RIO


WHY? Possible accessibility till 2050 WHERE? 0+-5 –180+-5, 70N-90N-70N WHEN? MOSAIC expedition period 8/2019-10/2020 WHAT? Copernicus, ECMWF S2S, DMI HYCOM-CICE

https://github.com/dmidk/NOCOS/tree/main/rio

SEA ICE THICKNESS(CroSat--Models)

Model strength and limitations

- Model has good simulation on ice edge.
- DMI HYCOM-CICE being overly conservative when estimating risk in ice
- Copernicus overlook potential risk in ice
- Models tend to overestimate thin ice thickness and underestimate thick ice thickness
- Awareness in polar navigation tactics
- Next step: apply second run of DT climate model output to RIO algorithm, and compared the output with current statistics