

Evoland Building an Operational Shallow Sentinel-2 Single Image Super-Resolution Network for EVOLAND Prototypes

Lessons Learned

Julien MICHEL, Ekaterina KALINICHEVA

CESBIO, Université de Toulouse, CNE<mark>S/CNRS/INRAe/IRD/UPS</mark>, Toulouse, FRANCE

SUREDOS24 conference, Frascati, 29-31 may 2024

Super-Resolution in EVOLAND context

About EVOLAND (evo-land.eu)

- 3-years Horizon Europe Project
 - Coordinated by Vito
 - Partners: IIASĂ, CLS, UT3, SINERGISE, Joaneum Research, CNES, DLR, GAF and Eventflow
- Evolution of Copernicus Land Monitoring Service
 - 11 new candidate products for Copernicus Portfolio
 - Agriculture, water, forests, urban, general land cover
- ► Methods development (WP2) ⇒ Prototypes development (WP3)

SISR in EVOLAND: why, how ?

- Task T2.5 : improved spatial/spectral/temporal resolution led by UT3 (CESBIO)
 - Task T2.5.1: Improved resolution Single Image Super-Resolution applied to Sentinel-2

To be used by CLMS prototypes :

- Process all useful bands
- Radiometric Faithfulness is critical
- Inference time is critical
- Super-resolved image size vs. upscaling factor

Super-resolution or super-restoration?

The sen2venµs dataset - extended

Description [1]

- Open Dataset on Zenodo: https://zenodo.org/record/6514159
- 133k cloud-free patches, 29 locations
- ▶ B2, B3, B4, B5, B6, B7, B8, B8A
- ▶ from 10m/20m (S2) to 5m (Venµs)
- ► L2A products from theia.cnes.fr

Extension

- ▶ 20m B11 and B12 patches
- Also L2A from theia.cnes.fr
- No 5m reference !

J. Michel, E. Kalinicheva

Models and architecture

Models and parameters

- ► CARN [2] + ESRGAN (RRDBNet) [3]
- Shallow: only 3 to 4 residual blocks

Model	#params	Recept. Field
carn_1x3x64g4sw	1243 530	29
carn_2x3x64g4sw	1867914	17
carn_3x3x64g4sw	2 492 298	41
carn_4x3x64g4sw	3 116 682	53
carn_3x3x64g4	4 659 594	41
carn_3x3x64g1sw	5146506	41
esrgan_3x64x32	2 280 662	36

Complexity vs. perf. [4]

Discrepancies in the dataset

Discrepancies in the dataset

Impact on training and evaluation - spatial registration

- ► L₁ loss will drive models towards warping of the input
- At 1 pix. of registration error, L_1 loss no longer favors sharpness
- ▶ at 1 pix. registration error, PSNR can not distinguish sharp images from blurry ones

Impact on training and evaluation - spectral consistency

- L₁ loss will drive models towards spectral distorsion
- If there is spectral distorsion, PSNR can not distinguish sharp images from blurry ones

Pre-training stage (20 epochs): use simulated data

Simulate Sentinel-2 patches from Venµs

$$P_{sim}^{input}(n, i...) = \begin{cases} \left(P^{target}(n, i...) \circledast \phi_{\sigma^{spat}(2,m)}\right) \downarrow_{2} + \epsilon_{i} \sim \mathcal{N}(0, \sigma_{i}^{spect}) & i = 1...4 \\ \left(P^{target}(n, i...) \circledast \phi_{\sigma^{spat}(4,m)}\right) \downarrow_{4} + \epsilon_{i} \sim \mathcal{N}(0, \sigma_{i}^{spect}) & i = 5...8 \\ P^{input}(n, i...) & i = 9,10 \end{cases}$$

► Simulate downscaled S2 patches (x4) to train B11 and B12 (Wald trick)

$$P_{wald}^{input}(n,i\ldots) = \left(P^{input}(n,i\ldots) \circledast \phi_{\sigma^{spat}(4,m)}\right) \downarrow_{4} + \epsilon_{i} \sim \mathcal{N}(0,\sigma_{i}^{spect})$$

$$P_{wald}^{target}(n, i \dots) = \begin{cases} \left(P^{input}(n, i \dots) \circledast \phi_{\sigma^{spat}(2,m)}\right) \downarrow_2 + \epsilon_i \sim \mathcal{N}(0, \sigma_i^{spect}) & i = 1 \dots 4\\ P^{input}(n, i \dots) & i = 5 \dots 10 \end{cases}$$

► Total loss

$$\mathcal{L}_{pretrain}(\theta) = \mathcal{L}_{FR}(\theta) + \mathcal{L}_{Wald}(\theta)$$

GAN fine-tuning stage (10 epochs): use real data

GAN setup

- Standard UNet discriminator with High Pass Filtering of inputs
- Relativistic GAN formulation
- Checkpointing using BRISQUE no reference metric [5]

$$\mathcal{L}_{G}^{\mathcal{R}a} = \mathbb{E}_{x_{f}}[log(\mathcal{D}_{\mathcal{R}a}(x_{f}, x_{r}))] - \mathbb{E}_{x_{r}}[log(1 - \mathcal{D}_{\mathcal{R}a}(x_{r}, x_{f}))]$$

$$\mathcal{L}_{finetune}(\theta) = \mathcal{L}_{pretrain}(\theta) + \lambda \cdot \mathcal{L}_{G}^{Ra}(\theta)$$

And in Fourier domain (B7)

Bicubic FFT

super-resolution FFT

FFT difference

Performance gain from GAN fine-tuning

J. Michel, E. Kalinicheva

SUREDOS24 conference, Frascati, 29-31 may 2024

Fine-tuning visual assessment: minor improvements

J. Michel, E. Kalinicheva

Conclusions

Lessons learned

- Spatial and spectral discrepancies in multi-sensors dataset impairs training and evaluation
- Learning on simulated data allow to overcome this issue, with limitations
- Proper pre-training achieves a solid part of the final perf. wrt. GAN (for our shallow models)

EVOLAND

- Waiting for feedback from prototypes
- ▶ Now focusing on T2.5.2 and T2.5.3 (spatio-temporal fusion)
- Integration as a User Defined Function in OpenEO

Model available for inference on Sentinel-2 L1C and L2A products

 $\tt https://github.com/Evoland-Land-Monitoring-Evolution/sentinel2_superresolution$

	CPU (1 core)	CPU (8 cores)	GPU (A100)
L1C	6 hours	1 hour	6 minutes
L2A	5 hours	50 minutes	5 minutes

Example: 31TCG, 2020.08.08, B5, B6, B7, 5m bicubic

Example: 31TCG, 2020.08.08, B5, B6, B7, 5m SISR

Thank you

THANK YOU! Any questions?

- This work was partly performed using HPC resources from GENCI-IDRIS (Grant 2023-AD010114835)
- ► This work was partly performed using HPC resources from CNES.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

References I

- J. Michel, J. Vinasco-Salinas, J. Inglada, and O. Hagolle, "SEN2VENµS, a dataset for the training of Sentinel-2 super-resolution algorithms," May 2022.
- N. Ahn, B. Kang, and K.-A. Sohn, "Fast, accurate, and lightweight super-resolution with cascading residual network," in Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268, 2018.
- X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, "Esrgan: Enhanced super-resolution generative adversarial networks," in *Proceedings of the European conference on computer vision (ECCV) workshops*, pp. 0–0, 2018.
- S. Anwar, S. Khan, and N. Barnes, "A deep journey into super-resolution: A survey," *ACM Computing Surveys (CSUR)*, vol. 53, no. 3, pp. 1–34, 2020.

A. Mittal, A. K. Moorthy, and A. C. Bovik, "No-reference image quality assessment in the spatial domain," *IEEE Transactions on Image Processing*, vol. 21, no. 12, pp. 4695–4708, 2012.