

PROGRAMME OF THE EUROPEAN UNION

co-funded with

CMIX-II: Second edition of the Cloud Mask Intercomparison eXercise

Jan Wevers, Carsten Brockmann – Brockmann Consult GmbH Germany Sergii Skakun, Eric Vermote, University of Maryland / NASA GSFC

ESA UNCLASSIFIED - For ESA Official Use Only

CMIX - Recap and lessons learned CE®S Feesa

First CMIX in Numbers

In 2019 European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) initiated the first Cloud Masking Inter-comparison Exercise (CMIX) in the frame of CEOS WGCV (Committee on Earth Observation Satellites, Working Group on Calibration and Validation)

9 participants - 10 algorithms - 5 Reference datasets - 146 Sentinel-2 products - 113 Landsat 8 products

							Distribution of Landsat 8 reference scenes
Processor	Organization	Methodology	Dataset	Spatial	Spatial Spatial	# scenes	
ATCOR	DLR	Spectral tests (L8, S2)		domain	resolution		
CD-FCNN	University of Valencia	Machine learning (L8, S2)	CESBIO	Fully	60 m	S2: 30	
Fmask 4.0 CCA	USGS	Spectral tests (L8, S2)		classified			
FORCE	Humboldt-Universität zu Berlin / Trier University	Spectral test + parallax (for S2) (L8, S2)		Sentinel-2 scenes	Debugene	19.0	Landsat 8 GSFC_L8 LBBiome PixBox_L8
ldePix	Brockmann Consult	Spectral tests (S2)	GSFC	polygons	vector)	L8: 6 S2: 28	
				P = . / 8 =	(,		Distribution of Sentinel-2 reference scenes
InterSSIM	Sinergise	Machine learning + spatiotemporal context (S2)	Hollstein	Sample polygons	Polygons (at 20 m)	S2: 59	
LaSRC	NASA / University of Maryland	Spectral tests (L8, S2)	L8Biome	Fully classified	30 m	L8: 96	Sentinel-2
MAJA	CNES / CESBIO	Multi-temporal and spectral tests (S2)		Landsat 8 scenes			CESBIO GSFC_S2 Hollstein PikBox_S2
s2cloudless	Sinergise	Machine learning (S2)	PixBox	Sample	S2: 10 m	S2: 29	
sen2cor	ESA / Telespazio France	Spectral test + auxiliary data (S2)		pixels	L8: 30 m	L8: 11	

CMIX - Recap and lessons learned CE®S Feesa

Major findings

- Performance varied depending on the reference data
- Average OA for Sentinel-2: 80% to 89%
- Average OA for Landsat 8: 80% to 98%
- Performance improved when thin/semi-transparent clouds not considered
- Usage of a buffer improves performance of cloud detection at cloud edges

Remote Sensing of Environment 274 (2022) 112990

Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud -masking algorithms for Landsat 8 and Sentinel-2

https://doi.org/10.1016/j.rse.2022.112990

CMIX - Recap and lessons learned CE®S Feesa

Recommendations

- Definition of cloud should be based on a more physical approach
 - Cloud Optical Depth (COD)
- Validation datasets need to be produced specifically for the exercise
 - Consistent cloud definition
 - Cloud boundary
 - Time series
- The analysis framework should be designed to address different questions
 - Sample-based vs. area based
 - Temporal analysis
 - Application-based

Cloud optical depth retrieval from ground-based cloud imager (Mejia et al., 2016)

CMIX II - Objective

• To **inter-compare** a set of cloud detection algorithms for space-borne high-spatial resolution (10-30 m) multi- and hyperspectral optical sensors

• Focus on Sentinel-2, Landsat 8/9 and PRISMA data

Participants responsibilities

- Contribute to the definition the protocol
- Provide a detailed description of the CM processor
- Run CM processor with its standard parameters according to the protocol described and on data provided by the CMIX organizers
- Submit the results according to the **recommended formats**, and upload the results to the secure CMIX FTP within the scheduled period
- **Contribute** with preparation of the papers, presentations and other official communications to be published in the scientific literature at the end of the exercise

Major phases

- Definition of the inter-comparison protocol and reference datasets
 - June 2022: First Workshop
- Phase 1 TDS exercise
 - Provision of reference datasets samples (2 of 4 datasets)
 - Application of the CM processors (2 of 4 datasets)
 - Initial analysis of the results
 - Feedback from participants
- Phase 2 Main exercise
 - Preparation of the reference datasets
 - Provision of input datasets (to participants)
 - Application of the CM processors
 - Analysis of the results
 - Publication of complete datasets (reference + input data) after analysis
- **Results Analysis Report** (Internally to participants)
 - Q1/Q2-2024
- 2nd Workshop of CEOS-WGCV CMIX II
 - Approx. mid 2024 @ ESA or NASA

Results from first workshop

- Provide definition of cloud
 - Physically based, to be included in reference datasets
 - For the two main datasets COD estimates will be provided with cloud classification for better understanding of singe classes (e.g. thin clouds, medium thick clouds, totally opaque clouds)
- Compared to the initial schedule, include a <u>first round with a test dataset</u> (TDS) of all reference datasets, to ensure <u>everbody agrees with the datasets</u>.
- Accuracy comparison of <u>cloud shadows</u> is as important as clouds

CMIX-II Participants

- Number of participants has <u>doubled</u> (CMIX: 9 participants) and has now finally reached <u>18</u>.
- All of the listed participants have already processed the first results of the TDS or at least gave feedback.

No	Algorithm	Organization	Name
		NASA GSFC/UMD	Sergii Skakun
1	LaSRC	NASA GSFC	Eric Vermote
		NASA GSFC	Jean-Claude Roger
2	SEnSel	ESA/ESRIN	Alistair Francis
3	CNN cloud shadow mask	University College London	Feng Yin
4	FORCE	Trier University	David Frantz
5	MAGCMA	MAGELLIUM	Béatrice Berthelot
6	IdoPix	Brockmann Consult CmbH	Jorrit Scholze
0	Iderix	BIOCKMANN CONSULT GINDH	Jan Wevers
7	UVDeepCloud	University of Valencia	Luis Gómez-Chova
Q	KannaMask	KappaZota Ltd	Kaupo Voormansik
0	Каррамазк	καρραζεία εία	Tetiana Shtym
9	Hikerliu	CAS.CHINA	Yaokai Liu
10	Sen2Cor	Telespazio France	Jerome Louis
11	CloudScore+		
	CioddScore+		Valerie Pasquarella
12	Overland	Airbus Geo-Intelligence Toulouse (Airbus DS)	Hervé Poilvé
13	Cfmask	USGS	Pat Scaramuzza
			Bringfried Pflug, Avi
14	PACO	DLR	Avi Pertiwi
			Raquel de los Reyes
15	BrightEarth	ACRI	Christophe Lerebourg
16	LANA	South Dakota State Univ	Hankui Zhang
17	Fmask 4.6	University of Connecticut	Zhe Zhu Shi Qiu
18	Not provided	EO Consultancy	Ute Gangkofner

Datasets

- Reference datasets
 - <u>Sky Camera</u> Network
 - <u>PixBox</u> (expert pixel collection) dataset
 - General collection
 - Cloud border collection
 - <u>Multi-temporal</u> (time series) critical case collection (identifying potential systematic errors)
 - <u>Collaborative dataset</u> using IRIS (active learning): classification of subsets by the participants

Sky Camera

- Affordable sky camera system based on Raspberry Pi 4 and Omnivision OV5647 sensor (HFOV: 194, VFOV: 142)
- Stereo setup for future cloud-base height estimations
- Providing cloud optical depth estimates
- Growing sky camera network with 6 sites:
 - GSFC, Greenbelt, Maryland, USA
 - Wisconsin, USA
 - Sapienza University, Rome, Italy
 - Valencia University, Valencia, Spain
 - Sao Paulo University, Sao Paulo, Brazil
 - Antarctica https://geog.umd.edu/feature/umd-skycam-project-deploys-sky-imagers-antarctica

Cloud optical depth retrieval from ground-based cloud imager (Mejia et al., 2016)

PixBox – expert pixel collection

- Trained expert(s) manually labels pixels of an image sensor into a detailed set of pre-defined classes (E.g., different cloud transparencies, cloud shadow, and condition of the underlying surface)
- Collected dataset includes 10's of thousands of pixels because it necessitates representation for all classes, and for various observation and environmental conditions such as climate zones, solar illumination, viewing angles, etc.

PixBox – expert pixel collection

- Major <u>improvement</u> compared to CMIX: COD estimate is provided for each collected pixel.
- Two pixel collections per sensor
 - General collection comparable to CMIX but better distributed, including cloud shadow and COD
 - Dedicated cloud border collection
 - Might be skipped due to time constraints

Metrics

- Per pixel: confusion matrix and estimated OA, PA, UA
- Visual inspection (potentially study an impact on SR, especially with transparent/cirrus clouds)
- Comparisons to sky imagery outputs:
 - Per-pixel comparison, when a precise co-registration between sky and satellite images will be feasible.
 - Cloud fraction: cloud fractions derived from sky and satellite imagery in a specified ROI will be estimated and will be compared. A separate analysis of completely clear and fully cloudy scenes will be performed. Analysis will be performed using a varying threshold for defining clouds (fuzzy logic analysis).
- Time series analysis: a temporal analysis of metrics calculated for each match (between ground- and satellite-based imagery) will be performed for each location to identify consistent errors produced by algorithms.

Results from test datasets

Validation results for 16/18 algorithms for the PixBox S2 TDS

Test product: S2B MSIL1C 20210704T100029 N0301 _R122_T32TQM_20210704T121226

	Cohens kappa: 0.779
Pù	Box test validation - Sentine-2

Scotts Pi: 0.777

Krippendorfs alpha: 0.777

	Ciass	Clear	0.000	sum	0.4	e
	CLEAR	198	24	222	89.2	10.8
,	CLOUD	29	249	278	89.6	10.4
0	Sum	227	273	500		
•	PA	87.2	91.2		OA:	89.4
	ε	12.8	8.8		BOA:	89.2

Scotts Pl: 0.785 Krippendorfs alpha: 0.785 Cohens kappa: 0.785

PixBox test validation - Sentine-2 No.Rel

Class	Cent	Court	Sum		6
0.000		0000	-		
CLEAR	215	29	244	88.3	11.9
CLOUD	12	244	256	95.3	4.7
Sum	227	273	500		
PA	94.7	89.4		OA:	91.8
ε	5.3	10.6		BOA:	92.05

Scotts Pi: 0.835 Krippendorfs alpha: 0.835 Cohens kappa: 0.835

10.00	have b		a se a d	للاستعاد	in a s	6.00	diam.	× .
P180	KOK I	10.11	war	10.80	HOITI -	- 3401	1211.06	×.

Scotts Pl: 0.725 Krippendorfs alpha: 0.725 Cohens kappa: 0.728

	Class	Clear	Cloud	Sum	UA	£
	CLEAR	201	з	204	98.5	1.5
٥	CLOUD	26	270	296	91.2	8.8
algo	Sum	227	273	500		
	PA	88.5	98.9		OA:	94.2
	ε	11.5	1.1		BOA:	93.7

Scotts Pi: 0.881 Krippendorfs alpha: 0.881 Cohens kappa: 0.882

PixBox test validation - Sentine-2 No. Beer

			1.000	-		
	Class	Clear	Cloud	Sum	UA	ε
	CLEAR	159	4	163	97.5	2.5
	CLOUD	68	269	337	79.8	20.2
0	Sum	227	273	500		
•	PA	70.0	98.5		OA:	85.6
	ε	30.0	1.5		BOA:	84.25

Scotts Pi: 0.697 Krippendorfs alpha: 0.697 Cohens kappa: 0.702

PixBox test validation - Sentine-2

	50	pht,	s P	k,	Q.	76	7		
ripe	ien.	do	rfs	a	ьł	w.	¢.	767	
Co	he	ns.	kaj	24	a:	٥.	74	9	

Scotts Pi: 0.84 Krippendorfs alpha: 0.841 Cohens kappa: 0.841

Scotts Pl: 0.915 Krippendorfs alpha: 0.915 Cohens kappa: 0.915

PixBox test validation - Sentine-2

			PixBe	34		
	Class	Clear	Cloud	Sum	UA	ε
	CLEAR	189	14	203	93.1	6.9
1	CLOUD	38	259	297	87.2	12.8
ŝ	Sum	227	273	500		
¢	PA	83.3	94.9		OA:	89.6
	ε	16.7	5.1		BOA:	89.1

Scotts Pi: 0.787 Krippendorfs alpha: 0.788 Cohens kappa: 0.788

PixBox test validation - Sentine-2

Scotts Pi: 0.843 Krippendorfs alpha: 0.843 Cohens kappa: 0.843

PixBox test validation - Sentine-2

Scotts Pi: 0.84 Krippendorfs alpha: 0.841 Cohens kappa: 0.841

PixBox test validation - Sentine-2 PixBox Class Cloud UA Clear Sum ε CLEAR 128 21 149 85.5 14.1 Algo 14 CLOUD 99 252 351 71.8 28.2 Sum 227 273 500 PA 56.4 92.3 76.0 ÖA. ε 43.6 7.7 BOA 74.35

Scotts Pi: 0.488 Krippendorfs alpha: 0.489 Cohens kappa: 0.501

PixBox test validation - Sentine-2 Birth 1

			PAB	DK.		
	Class	Clear	Cloud	Sum	U A	ε
	CLEAR	196	110	306	64.1	35.9
15	CLOUD	31	163	194	84.0	16.0
68	Sum	227	273	500		
<	PA	86.3	59.7		OA:	71.8
	ε	13.7	40.3		80A:	73.0

Scotts Pi: 0.433 Krippendorfs alpha: 0.434 Cohens kappa: 0.447

PixBox test validation - Sentine-2

Scotts Pi: 0.855 Krippendorfs alpha: 0.855 Cohens kappa: 0.855

Results from test datasets

Results for multitemporal TDS

10/18 algorithms provided results

Calculate percentage of cloud flagging per pixel on annual data stack

This method helps to identify semisystematic and systematic false detections

S2 image single date ŝ Q Algo Algo 1 4 Algo Algo Algo 2 ഹ ø Algo Algo

2

Results from test datasets

Results for multitemporal TDS

11/18 algorithms provided results

Using the cloud flags to create mean annual cloud free composites

This method helps to identify algorithm problems (e.g., striping Algo 3) or higher cloud residuals (e.g., Algos 1,3,6)

Outlook

- Definition of the inter-comparison protocol and reference datasets
 - June 2022: First Workshop
- Phase 1 TDS exercise
 - Provision of reference datasets samples
 - PixBox delivered to participants
 - Multi-temporal delivered to participants
 - Sky-Camera TDS currently being uploaded to FTP
 - Workshop for the collaborative TDS planned end Sep. early October
 - Application of the CM processors
 - Results for PixBox and multi-temporal received from the participants
 - Initial analysis of the results
 - PixBox and multi-temporal delivered to participants
 - Feedback from participants
 - No feedback received yet

Outlook

- Phase 2 Main exercise starting January 2024
 - Preparation of the reference datasets
 - Provision of input datasets (to participants)
 - Application of the CM processors
 - Analysis of the results
 - Publication of complete datasets (reference + input data) after analysis
- **Results Analysis Report** (Internally)
 - Q1/Q2 2024
- 2nd Workshop of CEOS-WGCV CMIX II
 - Approx. mid 2024 @ ESA or NASA