4th Hydrospace-GEOGIoWS 2021 | 7-11 June 2021 "Inland Water Storage and Runoff: Modeling, In Situ Data and Remote Sensing" Hosted as a Virtual Event from ESA-ESRIN, Frascati (Rome), Italy

Hydrogeomorpological Parameters Extraction From Remotely-Sensed Products for SWOT Discharge Algorithm <u>Charlotte M. Emery¹</u>, K. Larnier¹, M. Liquet¹, J. Hemptinne¹, A. Vincent¹, S. Pena Luque² (1) CS GROUP-France, Space Business Unit, Toulouse, France (2) CNES, Toulouse, France

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

CONTEXT – The SWOT mission and its river products

Surface Water and Ocean Topography (SWOT) mission:

- Launch scheduled for 2022,
- Monitor oceans, lakes (area > 250 m²) and rivers (width > 100 m)
- For rivers, SWOT will provide:
 - 2D-maps of water surface elevations (Z),
- + along river centerline
 - Estimation of river width (W),
 - Estimation of surface slope (S)

 \Rightarrow SWOT Discharge product using (Z, W, S)

4th Hydrospace-GEOGloWS 2021 | 7-11 June 2021

CONTEXT –SWOT Discharge product

SWOT discharge product derived from the Manning equation:

$$Q = KS^{1/2} (A_0 + \delta A)^{5/3} W^{-2/3}$$

- ⇒ Need to **know bathymetry and roughness**: inferred simultaneously with discharge
- \Rightarrow Need **« good » priors** to initialize algorithms
- \Rightarrow Current project focuses on deriving roughness coefficients

CONTEXT: Land cover map from the iota2 chain

Constrain: method applicable at global-scale Assumption: roughness coefficient correlated to soil occupation

- **IOTA**² chain [Inglada et al, 2017]: build land cover maps from S2 images using a supervised machine learning method,
- Maps produced yearly over France with currently 23 classes
- Chain can be applied anywhere given a training database
- \Rightarrow Use land cover maps from IOTA² to derive roughness coefficients

2019 land cover map over France

snow/glacier sand dunes/beaches woody moorlands intensive grasslands coniferous forests natural grasslands tubers/roots sunflower fields soybean fields protein crops small-grain fields rapeseed fields road surfaces industrial/commercials units discontinuous urban fabric continuous urban fabric

- 1. Study domains
- 2. Methodology
- 3. Comparison against models
- 4. Application: SWOT discharge algorithm

- 1. Study domains
- 2. Methodology
- 3. Comparison against models
- 4. Application: SWOT discharge algorithm

STUDY DOMAINS

Upper Garonne river (France)

- 75-km-long reach between Toulouse and Castelsarrasin - 96-km-long reach between Cremona and Borgoforte

Middle Po river (Italy)

- 1. Study domains
- 2. Methodology
- 3. Comparison against models
- 4. Applications: SWOT discharge algorithm

METHODOLOGY: Principle

Derivation of Manning coefficient from Cowan formula: $n = (n_b + n_1 + n_2 + n_3 + n_4) \times m$

- [Arcement & Schneider, 1989]: decision tables based on local observation and expert/user decision,
- \Rightarrow Derive automatic version using remote global dataset

	n_b	n ₁	n 2	n 3	n_4	т
Description	Basic roughness from soil composition	Cross-sectional irregularities	Longitudinal irregularities	Obstructions	Vegetation effects	Meandering ratio
Source Floodplain	SoilGrids ¹	IOTA ² maps	=0.0	IOTA ² maps	IOTA ² maps	=1.0
Source Main channel	SoilGrids ¹	Cross-section profiles	GRWL ²	=0.0	=0.0	WorldRiverDatabase ³

- Expert/user decision for qualitative features (based on Arcement & Schneider)
- Publically available dataset : 1: global-scale soil composition database / 2: global-scale riverwidth database at 30-m resolution / 3:global-scale river centerline database with meander and sinusoity attributes

METHODOLOGY: Floodplains roughness specificities

Derivation of Manning coefficient from Cowan formula: $n = (n_b + n_1 + 0 + n_3 + n_4) \times 1.0$

	n_b	n_1	n 2	n_3	n_4	т
Description	Basic roughness from soil composition	Cross-sectional irregularities	Longitudinal irregularities	Obstructions	Vegetation effects	Meandering ratio
Source Floodplain	SoilGrids	IOTA ² maps	=0.0	IOTA ² maps	IOTA ² maps	=1.0

- Predominant use of land cover maps
- Native land cover classes aggregated over 8 macro-classes (including classes "water" and "glaciers and snow")
 - 1. Artificial surfaces,
 - 2. High-height agricultural areas
 - 3. Low-height agricultural areas
 - 4. Forests
 - 5. Natural bare grounds
 - 6. Woody moorlands

METHODOLOGY: Floodplains roughness specificities

Upper Garonne river (France)

Middle Po river (Italy)

═╹┛**╘╸╬╴━ ┼ ╹╹**━ ╚ ═╶╹╹╹╹╹═╴═╶╬╺**┷ थ**╹╹**╹**═ ╬**╹**┛ Ж ╶═╺┷╵

METHODOLOGY: Main channel roughness specificities

Derivation of Manning coefficient from Cowan formula: $n = (n_b + n_1 + n_2 + 0 + 0) \times m$

	n_b	n ₁	n ₂	n 3	n_4	m
Description	Basic roughness from soil composition	Cross-sectional irregularities	Longitudinal irregularities	Obstructions	Vegetation effects	Meandering ratio
Source Main channel	SoilGrids	Cross-section profiles	GRWL	=0.0	=0.0	WorldRiverDatabase

- Roughness estimated along a centerline at cross-sectional profiles
- n₁: Local survey cross-section profiles or extracted from *SWOT-like DEM* (see below)
- n₂/m: Cross-section closest line features from GRWL/WorldRiverDatabase selected to extract width and sinusoity

- n₃/n₄: effects of obstructions/vegetation neglected in large rivers

METHODOLOGY: application over the Garonne domain

Maps of roughness output

CLC* + BD Topo** (src:IGN) + agricultural Land Parcel Information System + Randolph Glacier Inventory used as training database,

-

-

- 145 cross-sections extracted from French DEM (src:IGN) + local topographic survey
- *: Corine Land Cover,
- **: French territory and infrastructures database

Up (Zoom in) : floodplain Strickler (colormap) + main channel Strickler (boxed value along channel)

Left : non-main channel Strickler (colormap) with original land cover map (greys)

METHODOLOGY: application over the Po domain

Maps of roughness

- Corine Land Cover used as training database,
- 91 cross-sections extracted from 2m-DEM from Lidar/underwatersonar/ground survey (src:AdBPo)

- 1. Study domains
- 2. Methodology
- 3. Comparison against models
- 4. Application: SWOT discharge algorithm

COMPARISON AGAINST MODELS : APPROACH

- 1. In situ and remotely-sensed observations of hydraulic variables were gathered over the study domains,
- 2. Mascaret 1D-hydraulic model used as proxy to simulated observed variables constrained by roughness coefficients from:
 - 1. Calibrated model,
 - 2. "Direct" model from our method
- 3. Friction in floodplain is the averaged friction over floodplain cross-section profiles
- 4. Models performances are evaluated against in situ data using classical metrics

Aggregated Strickler along cross-section profiles (Garonne model)

COMPARISON AGAINST MODELS : RESULTS

- 1. Study domains
- 2. Methodology
- 3. Comparison against models
- 4. Application: SWOT discharge algorithm

APPLICATION: SWOT DISCHARGE ALGORITHM - HiVDI

THE BUILT REAL STRATE

CONCLUSIONS

- Presentation of a processing chain to derive roughness coefficients from:
 - Land cover maps, soil composition maps,
 - River geomorphology databases
- Outputs provide:
 - Maps of roughness coefficients in floodplains,
 - Roughness coefficients at **nodes** along centerlines in **main channel**
- Generated roughness coefficients appears **satisfying priors** for SWOT discharge algorithms (or other applications)
- Processing could be **applied anywhere** thanks to:
 - Publically-available global-scale databases,
 - Possible extension of IOTA² chain globally

An example of generated Strikcler coefficients

THANK YOU FOR YOUR ATTENTION

Do you have any questions ?

