

Why are machine learning forecast systems so fast?

Performance measurement of traditional and ML forecast systems Christopher Subich Environment & Climate Change Canada christopher.subich@ec.gc.ca

· eesa

- 1. Introduction and Scope
 - The surprising computational powers of AI
 - Scope of this talk
 - Deepmind's GraphCast vs ECCC's GEM
- 2. Performance measurements
 - Roofline model of performance
 - Hardware capabilities at ECCC
- 3. Results
- 4. Discussion & Conclusions

- The age of data-driven, AI-based weather forecasting is new
 - Just more than two years since the publication of FourCastNet (v1, NVidia)
 - GraphCast (Deepmind) is less than eighteen months old.
 - Other recent entries into the field:
 - Pangu-Weather (Huawei), FengWu (Shanghai Al Lab), FuXi (Fudan University), AIFS (ECMWF)
 - All promise state of the art forecast performance with "orders of magnitude" shorter running times
- These models focus on *quarter-degree, global atmospheric forecasts* at lead times from a few hours to about 10 days
 - Comparable to state-of-the art traditional forecast systems from a few years ago
 - Limited set of model levels, output times, and output variables
 - Common but yet-unproven assumption that it's only a matter of time before these models overtake traditional NWP at the cutting edge.

This talk

- Narrow objective of this talk: examine the *performance claims* of GraphCast compared to Environment & Climate Change Canada's (ECCC's) operational forecast system
- Forecast accuracy (and physical consistency) is a matter of ongoing research, and any talk is sure to be immediately out of date as a new system breaks score records.
 - Performance, however, is more a matter of basic architecture
- What supports the incredible speed claims for AI forecasting systems?
 - Have they learned a better / more efficient representation of the Earth system?
 - Are AI systems just really good at running on GPUs?
 - Are the claims misleading because the AI systems do less work?
 - Fewer vertical levels / output variables / timesteps
- The answer affects the long-term future of traditional NWP
 - We might never beat AI at a "more efficient" representation of weather on Earth
 - Gains from sparse outputs will be lost if we demand more complete forecasts

The contenders

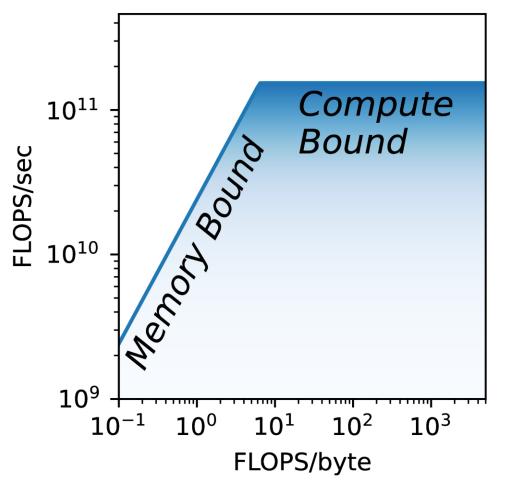
- Representing AI forecasting systems: GraphCast
 - Open-sourced in August 2023 by Google Deepmind
 - Quarter-degree, 6h forecast iterated for longer lead times
 - 37 pressure levels, predicting wind, temperature, geopotential, and humidity plus several surface variables
 - Run on a single NVidia A100 GPU
 - Graph Neural Network architecture
- Representing traditional NWP: ECCC's GEM
 - One third-degree global configuration, matching operational ensemble forecast
 - 84 vertical layers (log hydrostatic pressure coordinate), 15 minute timestep
 - Run on 80 CPU cores (one compute node)
 - Semi-Lagrangian advection, implicit Crank-Nicholson timestepping scheme with FFTbased innermost solver

- Both systems are asked to produce a single 24-hour forecast
- Closest possible comparison between stock/operational systems, but still not equal
 - GraphCast has slightly higher horizontal resolution
 - GEM has much higher vertical resolution and a much shorter timestep
 - Necessary for stability, but also allows more frequent outputs "for free"
 - GEM was run with full microphysics enabled, tracking about 200 variables internally
 - GEM would normally run operationally with multi-node parallelism
- Measurements:
 - Overall wall-clock time, including necessary I/O to read inputs and write the forecast
 - Computation time, excluding I/O
 - FLOPS executed on CPU or GPU during "core" computation
 - Amount of memory accessed during computation
- Measurements taken via CPU/GPU performance counting registers

- It's difficult to compare performance across both algorithms and hardware architectures
 - How many CPUs are equivalent to one GPU?
 - Instead, compare each algorithm to the hardware's peak performance
- Schematic view:
 - Numerical forecasting mostly does math (FLOPS)
 - Forecast systems also must move data around in memory
 - These things happen simultaneously, but both take time

 $runtime = max \left(\frac{memory \ loads}{memory \ bandwidth}, \frac{FLOPS}{compute \ rate} \right)$

- Idealized two-parameter model
 - Assumes that the ideal algorithm should perfectly use computing resources
 - No serialization or communication bottlenecks
 - No real code will ever reach the peak, but we'd like to come close

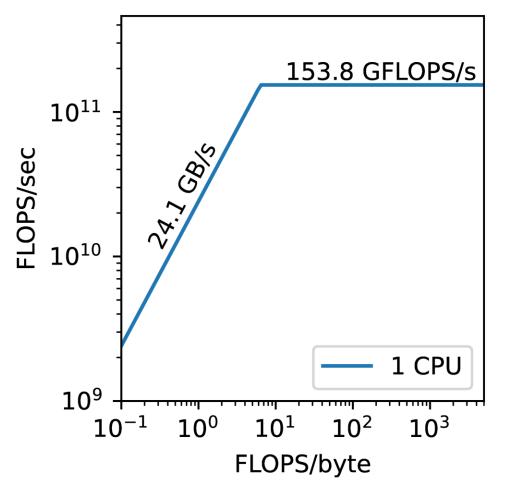


Roofline model

• On a log-log plot, peak performance looks like a "roofline"

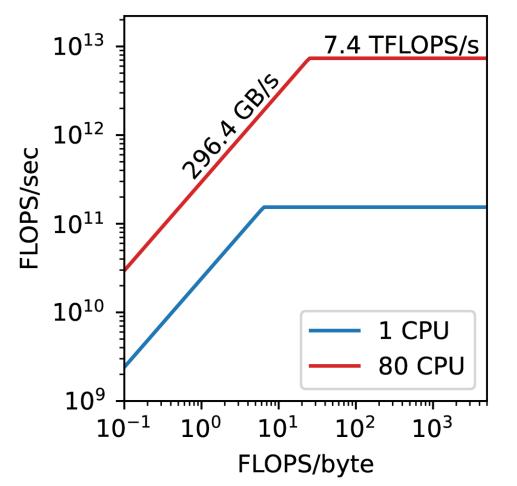
- Left side: *memory bound* algorithms
 - Faster with better memory/cache
- Right side: compute-bound algorithms
 - Faster with more/wider vector units, faster floating-point math
- Transition happens at a particular compute intensity
 - Measured in FLOPS/byte
 - Hardware defines the roofline shape
 - Software can exist anywhere beneath the roofline

- Tests were run on Environment & Climate Change Canada's underhill system
 - Debut in June 2022 at rank 69 on Top500 list
 - Lenovo Thinksystem SD650 V2 system
 - Primary compute nodes have 2 Xeon Platinum 8380 40-core processors @ 2.3GHz
 - 80 CPU cores per compute node (no hyperthreading used)
 - Supplemented with two GPU nodes, each with 4 NVidia A100 GPUs (40GB)
 - 2 × 24-core CPUs on each GPU node, but that's not particularly relevant
- Testing configurations:
 - GEM: 80 CPU cores (one compute node; inherently parallel)
 - GraphCast:
 - 1 GPU (typical deployment)
 - 1 CPU (minimum possible configuration)
 - 80 CPU ("equivalent" to GEM)



 Measurements made via Empirical Roofline Tool

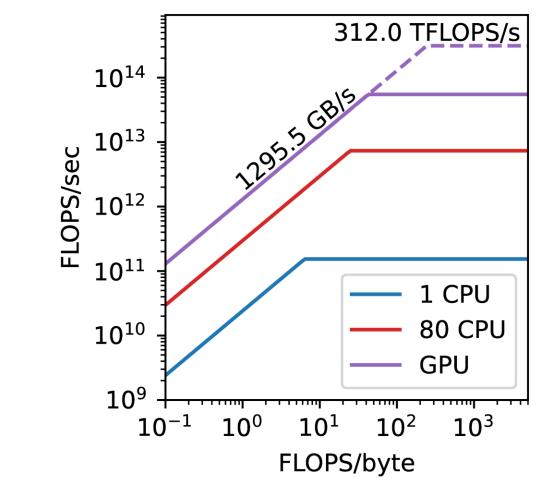
- Measures effective system performance, rather than on-paper specification
- 1 CPU core: the most basic "compute unit"
 - 24.1 GB/second memory bandwidth
 - About 150 GFLOPS/sec compute rate (single precision)
 - Requires about 8 FLOPS/byte for an algorithm to become compute-bound (32 FLOPS per single-precision float)



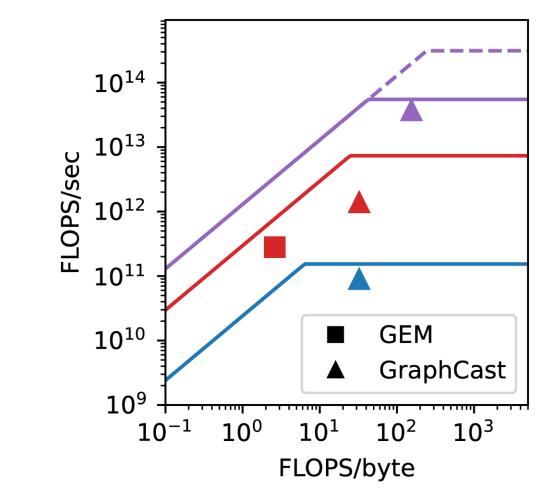
- 80 CPU cores: one full compute node
 - 295 GB/sec memory bandwidth
 - 7.35 TFLOPS/sec compute rate
- Values are obviously better than for 1 CPU core, but not 80× better

- About 12× memory bandwidth
- About 50× compute rate
- Limits due to saturation of memory bus and CPU boost clock rate
- Need greater compute-intensity (now 25 FLOPS/byte) for an algorithm to become compute-bound

System performance – 1 GPU



- One single A100 GPU
 - 1.3 TB/sec memory bandwidth to oncard high-bandwidth memory
 - 55 TFLOPS/sec baseline compute rate (half-precision)
 - 312 TFLOPS/sec with tensor cores (onpaper)
- One GPU has 4–40× the performance of an entire compute node
- Requires even greater compute intensity for best use: up to 240 FLOPS/byte



Results

 FLOPS and compute intensity measured for compute kernels only, not I/O or initialization

ECMWF

elest

- GEM: 150 TFLOPS, 2.6 FLOPS/byte
 - 80 CPU: 596s runtime, 530s compute
 - Clearly limited by memory bandwidth
- GraphCast: 110 TFLOPS
 - CPU: 32 FLOPS/byte
 - 1 CPU: 1265s, 1239s compute
 - 80 CPU: 103s, 80s compute
 - GPU: 154 FLOPS/byte
 - 1 GPU: 25s, 3.1s compute
 - Compute-limited on CPU, close on GPU

- GraphCast is indeed very fast, but it's not doing less work than a traditional NWP
 - 110 TFLOPS versus 150 TFLOPS for GEM, with comparable number of grid points
 - Fewer simulated variables
- Decomposition of the speed advantage:
 - 1.36 × from fewer FLOPS (but no physics parameterizations)
 - 4.85 × from better compute efficiency (80 CPU result)
 - 25.8 × from running on a GPU (1 GPU vs 80 CPU)
 - Net speed advantage of 170×
- 3 seconds per 24-hour forecast is almost impractically fast
 - Computation time can easily become dominated by I/O
 - Renewed emphasis on high-performance, easily-parsed, parallelizable file formats
 - Easy to accidentally leave expensive GPUs idle

- Return to the questions from the beginning:
- Have AI forecast systems learned a more efficient representation of the weather?
 - Probably not interperability is hard, but no evidence that GraphCast does more with fewer FLOPS
- Are AI forecast systems really good at running on GPUs?
 - Definitely the GPU advantage was responsible for over half of the 170× performance improvement
 - Enabled because GraphCast has much greater compute-intensity than GEM; a straightforward port of GEM would not receive the same benefit
- Are the performance claims misleading because AI systems do less work?
 - *Probably not,* but there's room for nuance
 - A 170× advantage is a lot, even if an AI system needs to be larger/run more to produce complete outputs
 - Open questions about model capacity & what can be added without a penalty

- I think this story is oddly encouraging for traditional NWP
- We leave a lot of compute capacity underutilized
 - GEM could do an order of magnitude more computation "for free" with its current memory access patterns
 - Hard to retrofit this onto current models, but for the future we need to re-think our intuitions about what is fast and slow
 - Very high-order dynamical cores?
- AI models are designed around accelerator use and high compute-intensity, but face their own challenges
 - We aren't yet seeing weather models on the scale of the largest language models
 - What price will we pay for GPU parallelism, especially across nodes?
 - High-resolution, global, multimodal weather data is a very large working set

References

- GraphCast Remi Lam et al. 2023. "Learning Skillful Medium-Range Global Weather Forecasting." Science 382 (6677): 1416–21. <u>https://doi.org/10.1126/science.adi2336</u>.
- GEM <u>https://github.com/ECCC-ASTD-MRD/gem</u>
- PAPI (Performance measurement library) <u>https://icl.utk.edu/papi</u>, <u>https://github.com/icl-utl-edu/papi</u>
- NVidia GPU performance counters <u>https://developer.nvidia.com/cupti</u>
- Empirical Roofline Tool <u>https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/software/ert</u>

- Measurement procedure:
 - GEM: dynamical core and physics parameterizations were broken out via internal profiling for measuring compute time and memory/FLOPS (roughly equal time in each)
 - GraphCast: Based on Deepmind sample code, discarding one forecast to exclude JAX compilation times.
- Floating point events:
 - CPU: Aggregate PAPI_SP_OPS and PAPI_DP_OPS, which combine scalar and vector operations with appropriate factors; double-precision received 2× weight.
 - GPU: smsp__ops_path_tensor_src_bf16_dst_fp32, counting tensor-core operations (about 98% of all FLOPS)
- RAM events:
 - CPU: OCR: READS_TO_CORE_DRAM, counting cache lines moved from RAM to CPU
 - GPU: dram___bytes_read, reads from on-GPU memory