Swarm 10 Year Anniversary & Science Conference 2024
Beyond steady state:
Solving the induction equation in the ionosphere

Karl Laundal, Spencer Hatch, Andreas Skeidsvoll, Michael Madelaire, Jens Hessen
University of Bergen, Norway

Lotte van Hazendonk
UNIS, Norway

Heikki Vanhamäki
University of Oulu, Finland
Conventional magnetosphere-ionosphere coupling

- Conventional M-I coupling represents the ionosphere as an electric circuit
- The circuit analogy is only valid in steady state and neglects induction.
 That is, \(\frac{\partial B}{\partial t} = 0 \)
In space plasmas, \(\mathbf{B} \) and \(\mathbf{v} \) are primary variables and \(\mathbf{E} \) and \(\mathbf{j} \) are derived. The ionosphere is no exception (Vasyliunas 01, 05, 12, ..., Parker 96, 07, ...)

To understand magnetic field variations, we cannot neglect induction.
Is it detectable?

• Observations of $\partial B / \partial t$ on ground can be used to estimate $\nabla \times E$ in the ionosphere – analogous to what is done with main field models and the core-mantle boundary

• Madelaire et al. (GRL, accepted), calculate $\nabla \times E$ and the corresponding plasma flow based on average magnetic field variations during a solar wind pressure increases

• The velocities are small, but conceptually very important – this is why magnetic field changes
A 2D dynamic model

Goal:
Simulate dynamic ionospheric response to magnetic field implied by FACs

Input:
- Magnetic field in space associated with FACs
- Conductances

Output:
- B_r, E, J_S

Example Pedersen conductivity from EISCAT (to scale!)
Goal:
Simulate dynamic ionospheric response to magnetic field implied by FACs

Input:
Magnetic field in space associated with FACs
Conductances

Output:
\(B_r, E, J_S \)
A 2D dynamic model

The electric field can be derived from the momentum equations for ions and electrons. It is known as the Generalized Ohm’s law

\[E = \frac{\sigma_P \mathbf{b} \times (\mathbf{j} \times \mathbf{b}) + \sigma_H \mathbf{j} \times \mathbf{b}}{\sigma_P^2 + \sigma_H^2} - \mathbf{u} \times \mathbf{B}_0 \]

See, e.g., Leake et al. 2014, SSR
A 2D dynamic model

Since the ionosphere is a delta function, it is easy to integrate in altitude (we ignore neutral wind):

\[\mathbf{E}_S = \hat{r} \times \left(\frac{\Sigma_P \hat{b} \times (J_S \times \hat{b}) + \Sigma_H J_S \times \hat{b}}{\Sigma_P^2 + \Sigma_H^2} \times \hat{r} \right) \]

ionosphere, \(\partial \mathbf{E}/\partial t = -\nabla \times \mathbf{E} \)

atmosphere, \(J = 0 \)

ground

“gap region” \(J \times \mathbf{B} = 0 \)

\[\mathbf{E} = \frac{(\Sigma_P \hat{r} \times \hat{r} + \Sigma_H \hat{r} \times \hat{r})}{(\Sigma_P^2 + \Sigma_H^2)} \]

\[J_S = \hat{r} \times (\mathbf{B}^+ - \mathbf{B}^-)/\mu_0 \]

Swarm 10 Year Anniversary & Science Conference 2024, 08 – 12 April 2024, CPH Conference, Copenhagen, Denmark
A 2D dynamic model

Faraday’s law becomes:

\[
\frac{\partial B_r}{\partial t} = -\nabla \times \left[\eta_p \begin{pmatrix} b_r^2 + b_t^2 & -b_t b_\phi \\ -b_t b_\phi & b_\phi^2 \end{pmatrix} \begin{pmatrix} J_\theta \\ J_\phi \end{pmatrix} + \eta_H \begin{pmatrix} 0 & b_r \\ -b_r & 0 \end{pmatrix} \begin{pmatrix} J_\theta \\ J_\phi \end{pmatrix} \right]
\]

\[
\begin{pmatrix} J_\theta \\ J_\phi \end{pmatrix} = \frac{1}{\mu_0} \begin{pmatrix} B_r^2 - B_t^2 \\ B_\phi^2 - B_\theta^2 \end{pmatrix} \quad \eta_{P,H} = \frac{\Sigma_{P,H}}{\Sigma_{P}^2 + \Sigma_{H}^2}
\]

Input:
- Magnetic field in space associated with FACs
- Conductances

Output:
- \(B_r, E, J_S \)
An analytical solution

- Assuming *uniform conductance* and *radial field lines*, we find an analytical solution

\[B_r \text{ (and } E) \text{ change as } e^{\frac{-\Sigma_P(2n+1)}{R\mu_0(\Sigma_P^2+\Sigma_H^2)}t} \]

- We see that:
 - Large scales change more slowly
 - Changes are faster when \(\Sigma_P \approx \Sigma_H \)
 - This is not negligible with 1Hz data
Global dynamic response with (semi)-realistic conductance and dipole magnetic field

Input FAC (AMPS)

Hall conductance

Pedersen conductance

B_r and potential electric field
Global dynamic response with (semi)-realistic conductance and dipole magnetic field

Input FAC (AMPS)

Hall conductance

Pedersen conductance

B_r and potential electric field

AMPS B_r
The AMPS and SWIPE models

- Global average magnetic field disturbances and associated currents, derived with magnetometer data from CHAMP and Swarm.
 - **New:** Most recent update uses all data until late 2023
 - Web interface: https://birkeland.uib.no/data/amps/
 - Python code https://github.com/klaundal/pyamps
- See also SWIPE: A recently developed model of electric field, Swarm Hi-C, and quantities derived from it and AMPS (assuming steady state)
 - https://github.com/Dartspacephysiker/pyswipe
 - Poster by Spencer Hatch
Conclusions

• Faraday’s law should not be neglected in the ionosphere...
 • If interested in ~0.1 Hz variations (depending on scale size)
 • Or if interested in the process that causes magnetic field disturbances
• 2D simulation is a promising alternative to current MI coupling
• Todo:
 • Account for the poloidal part of the magnetic field of FACs
 • Evolve fluid equations (density, momentum, energy)
 • Couple with magnetospheric MHD simulation
 • Properly handle low latitudes
 • Winds
 • Current continuity between hemispheres
 • A full 3D treatment of the dynamics