

PROGRAMME OF THE EUROPEAN UNION

co-funded with

Continuous monitoring of biogenic VOC fluxes over South America by inversion of TROPOMI HCHO, 2018-2021

Jenny Stavrakou, Jean-François Müller, Beata Opacka Glenn-Michael Oomen, Corinne Vigouroux

Royal Belgian Institute for Space Aeronomy (BIRA-IASB)

Context and objective

- South America hosts the Amazon forest, single largest source of *biogenic hydrocarbon (BVOC)* fluxes, also a region with extreme wildfires
- **o** Data scarcity leads to large uncertainties in emission estimates and in their changes
 - \checkmark The photo-oxidation of most hydrocarbons leads to HCHO formation
 - ✓ Satellite HCHO can inform us on the emitted hydrocarbons of biogenic and pyrogenic origin (Millet et al. 2008, Stavrakou et al. 2009, Barkley et al. 2013, Bauwens et al. 2016,...)

✓ Thanks to TROPOMI, HCHO is retrieved at 3.5×5.5 km² and high signal-to-noise

PROGRAMME OF THE

EUROPEAN UNION

opernicus

co-funded with

eesa

Combined with CTMs enhanced with inverse modelling capabilities, these observations allow to infer <u>improved</u>, <u>space-based estimates of BVOC emissions</u>

Need for lower biogenic emissions ?

PROGRAMME OF THE EUROPEAN UNION

co-funded with

opernicus

- $\checkmark~$ A priori fluxes need to be scaled significantly down
- ✓ Large mismatch btw top-down SCIAMACHY & OMI
- ✓ SCIAMACHY badly affected by the SSA

Poor spatial coverage with previous sensors

Bauwens et al. 2016

Barkley et al. 2013

VOC and NOx linked through chemistry

PROGRAMME OF THE EUROPEAN UNION

co-funded with

✓ Aircraft data indicate that the NOx levels control the HCHO photochemical production and loss rates

✓ [NO]: 5-10⁴ pptv → Big change in radical chemistry
 ✓ [HCHO] :0.8-14 ppbv, most abundant when both isoprene and NOx are high

opernicus

```
At high [NO]:

\checkmark ISOPO2 + NO \Rightarrow ISOPO + NO<sub>2</sub>

\checkmark ISOPO (+O<sub>2</sub>) \Rightarrow MVK/MACR + HCHO + HO<sub>2</sub>

\checkmark MVK/MACR + OH \Rightarrow ... \Rightarrow m HCHO

At low [NO]:

\checkmark ISOPO2 + HO<sub>2</sub> \Rightarrow ISOPOOH + O<sub>2</sub>
```

 \checkmark ISOPOOH + OH $\rightarrow ... \rightarrow n$ HCHO

How do the NOx levels affect the top-down BVOC estimates over South America? How do the optimized BVOC levels affect top-down NOx emissions?

Design an iterative inversion method which takes into account for the *NOx-VOC-OH feedbacks*, and uses TROPOMI HCHO and NO₂ columns as top-down constraints

TROPOMI HCHO and NO₂ data

PROGRAMME OF THE EUROPEAN UNION

co-funded with

- Use TROPOMI PAL NO₂ (van Geffen et al. 2022) : higher tropospheric columns than previous versions & low bias wrt groundbased data
- Filter out NO₂ data contaminated by fires

Use TROPOMI HCHO cloud free (CF<20%), clear sky 0 AMF, QF>0.5 (De Smedt et al. 2021)

opernicus

Bias-corrected TROPOMI HCHO (Vigouroux et al. Ο 2020): 1.492 x TROPOMI-1.134 10¹⁵ cm⁻²

Seasonality of HCHO columns

- ✓ Seasonality is driven by biogenic emissions and fire events: low columns in wet season (January-July), enhanced columns in dry season (August-December)
- ✓ Factor of 2-5 column increase between the dry and wet seasons, depending on the region

PROGRAMME OF THE

EUROPEAN UNION

eesa

co-funded with

opernicus

 Strongest changes over the tropical rainforest and savanna regions, more prone to fires

- Fire inventories indicate year 2019 emissions are twice as high as in 2018
- $\,\circ\,\,$ Emissions are even higher in 2020 (by 25% wrt 2019)

The MAGRITTEv1.3 CTM

PROGRAMME OF THE EUROPEAN UNION eesa

co-funded with

opernicus

Zoom into South America (15°N-35°S, 32-85°W), Spatial resolution : 0.5°x0.5°

Adjoint-based inversion in 4 steps

Top-down

VOC fluxes

modelling
(3)

Inversion steps : (1)-(4)

Top-down

NOx fluxes

Impact of NOx inversion on HCHO

PROGRAMME OF THE EUROPEAN UNION

OPERNICUS co-funded with

 Significant changes in emission patterns, esp. in wet season

- Increase of soil NO fluxes (by 40% over Amazonia)
- Similar but *slightly* stronger changes in surface NO₂, primarily due to the O₃ increase (higher NO₂/NO due to NO+O₃ reaction)
- O₃ levels also
 increase by up to 50% in March (ca. 7
 ppb), due to higher
 NO_x levels
- High NOx \rightarrow *increased oxidation* of CH₄ and other VOCs into HCHO
- *Enhanced Y_{HCHO}* from isoprene due to higher NO

Enhanced natural NO fluxes Decreased biogenic flux in Amazonia

opernicus

co-funded with

eesa

VOC-NOx chemistry interplay

PROGRAMME OF THE EUROPEAN UNION

ODERNICUS co-funded with

eesa

60 50

45 40

35 30

25 20

15

The VOC flux decrease over the Amazon decreases the formation of organic nitrates (RONO₂) from VOC + NO reactions

The decreased $RONO_2$ formation in the Amazon leads to increased NO_2 columns. Therefore, smaller increase in NOx flux is inferred in <u>Step 3</u> compared to <u>Step 1</u>.

Lower NOx flux in *Step 3* results in lower HCHO production yield in isoprene oxidation \rightarrow lower HCHO columns \rightarrow higher BVOC emission in <u>Step 4</u> compared to <u>Step 2</u> is needed to match TROPOMI

Summary of top-down estimates

PROGRAMME OF T	HE
EUROPEAN UNION	

co-funded with

NO _x fluxes (Tg N)	g N) A priori <i>Step 1</i>		Step 3		
Soil	1.67	2.14	2.04		
Lightning	1.14	1.34	1.25		
Total	2.81	3.48 (+24%)	3.29 (+17%)		
Amazonia					
Soil	0.88	1.24 <mark>(+40%)</mark>	1.10 (+25%)		
Lightning	0.57	0.75 (+31%)	0.68 (+20%)		

Biogenic	A priori	Step 2	Step 4	
VOC fluxes	142	132 (-7%)	134 (-6%)	
(Tg)	Amazonia			
	93	73 (-22%)	80 (-14%)	

The satellite data suggest

opernicus

- Increased natural NOx fluxes over Amazonia; Strongly enhanced fluxes in Nordeste in Brazil
- Slight decrease of BVOC fluxes over Amazonia

 ✓ The use of bias-corrected TROPOMI HCHO data results in top-down estimates close to the prior (on average)

Evaluation against Porto Velho data

PROGRAMME OF THE EUROPEAN UNION

co-funded with

opernicus

· e esa

 FTIR HCHO and isoprene column measurements at Porto Velho (8.77°S, 63.87°W), on the border between Rondônia and Amazonas Brazilian states

June-September 2019

а

S

First retrievals of isoprene from groundbased FTIR spectra (Wells et al., 2022)

- Due to the VOC-NOx chemistry, combining satellite NO_x and HCHO columns leads to an *improved* top-down determination of NOx and VOC fluxes, especially in tropical regions where NO_x fluxes bear large uncertainties
- ✓ The TROPOMI data suggest *substantial spatial changes* in emissions
- Factor of 2 higher top-down natural NO_x flux over Amazon, Northern South America and eastern Brazil - <u>cf. poster of Beata Opacka et al.</u>
- Strong reduction in biogenic fluxes over western Amazonia, and increase to the north of the Amazon river, in line with preliminary comparisons with CrIS isoprene
- ✓ Fairly good comparison against ground-based HCHO and isoprene column data at Porto Velho
 - Extend to more years to study the *interannual variability* of top-down sources

PROGRAMME OF THE EUROPEAN UNION ·eesa

co-funded with

opernicus

- Evaluate against more data (e.g. aircraft missions)
- $\circ~$ Design similar setups and study other tropical regions