

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Cloud and Precipitation Microphysics Retrieval for EarthCARE's Doppler Cloud Profiling Radar Measurements

*Kamil Mroz*¹, B. Puigdomènech Treserras², A. Battaglia^{1,4,5}, P. Kollias^{2,3}, A. Tatarevic², F. Tridon⁴ ¹National Centre for Earth Observation, UK; ²McGill University, Canada; Stony ³Brook University, USA; ⁴Politecnico of Turin, Italy; ⁵University of Leicester, UK

C-CLD overview

•

٠

٠

C-CLD overview

- C-CLD is composed of several modules
- C-TC classification is used to select the specific algorithm
- Liquid cloud and light drizzle algorithm based on the power law relationships
- Snow/cold &warm rain algorithms are based on the OE

The OE framework aims at balancing the information provided by:

- The CPR measurements in the entire column
- The statistical information on ground-based precipitation rates and sizes
- Continuity of estimated quantities

$$2\phi = \underbrace{[y - F(x)]^T R_Y^{-1}[y - F(x)]}_{Y} + \underbrace{[x - x_a]^T R_a^{-1}[x - x_a]}_{R_a^{-1}[x - x_a]} + \underbrace{x^T R_s^{-1} x}_{Y};$$

Measurement component

Continuity

- F forward model
- y measured reflectivity and sedimentation velocity
- x state vector
- $x_a a$ -priori estimate of the state vector,

 R_{y}^{-1} , R_{a}^{-1} , R_{x}^{-1} - weights

OE concept: measurement term

Measurement component

Continuity

0.5 kg m⁻²

1.0 kg m⁻¹

- Scattering properties of rain are simulated using T-matrix approximation
- Radar measurements are simulated using a scattering dataset that correspond to realistic snowflake shapes via the Discrete Dipole Approximation.
- Riming is parameterized, assuming the "fill-in" model
- Particle size distribution modeled as the Gamma function:

 $N(D) = \Gamma(D; D_m, WC, \mu)$

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 - 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

C-CLD product

OE concept: a-priori term

 $2\phi = \underbrace{[y - F(x)]^T R_Y^{-1}[y - F(x)]}_{Y} + \underbrace{[x - x_a]^T R_a^{-1}[x - x_a]}_{R_a^{-1}[x - x_a]} + \underbrace{x^T R_s^{-1} x}_{X};$

Measurement component

Continuity

Rain (NASA DSD dataset):

Ice/snow (Matrosov & Heymsfield 2008, 2017):

WC $[g/m^3] = 0.086 (Z_e [mm^6m^{-3}])^{0.92};$

 D_{m} [cm] = 0.052 (Z_e [dBZ])^{0.280} for snow, 0.047 (Z_e [dBZ])^{0.294} for cirrus

Uncertainty in $log_{10}WC$ of 0.9 B Uncertainty in $log_{10}D_m$ of 0.9 B

 $log_{10}WC [g/m^{3}] = 0.109 Z_{e} [dBZ] - 2.93 \pm 0.2 \text{ for } Z_{e} > 12.5dBZ$ $= 0.038 Z_{e} [dBZ] - 2.04 \pm 0.3$ for $Z_{e} < 12.5dBZ$

 $\log_{10} D_m$ [cm] = 0.01 Z_e [dBZ] - 1.55 ±0.15 for 10 dBZ< Z_e

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 - 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

C-CLD product

Validation: GEM simulations

AXA cesa

- Underestimate for large raindrop sizes
- Insufficient number of the validation points for large

Validation needed: rain module

PDF of disdrometer data

Only 0.2% of CloudSat data in rain exceeds 12dBZ

Validation needed: rain module

XA Cesa

Disdrometer + cloud probe

- Long integration time
- Small sampling volume
- Direct DSD measurements

Vertically pointing radar

- Short integration time
- Large sampling volume
- Indirect DSD estimate:
- Vertical wind estimate is crucial for accuracy W or G band system needed (Kollias et al. 2002)
- Lidar system needed to estimate #droplets below 200um

Validation needed: snow/ice module

Mass-size relationship: m [kg] = α D[m]^{β}

Simulations of aggregates

LAXA

·eesa

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

C-CLD product

Validation needed: snow/ice module

JAXA

·eesa

Conclusions and Future work

- C-CLD is a precipitation retrieval based on the OE framework
- Information content of EC CPR measurements varies depending on hydrometeor size and type:
- reflectivity is more informative for ice and snow
- mean Doppler velocity more useful in rain
- Calibration and validation activities need to focus on weather conditions not included in GEM simulations:
- > Large particle sizes
- Warm rain conditions
- C-CLD algorithm was applied to stratiform precipitation only; we can test it in convective profiles
- More studies on liquid cloud detection needed
- Explore potential for horizontal continuity, i.e., diverge from a profile-to-profile approach