

Algorithm developments for the EarthCARE MSI cloud products and the early phase analysis of warmwater clouds by the combined use of the cloud radar and the imager

> Takashi Y. NAKAJIMA (Tokai U.) Minrul WANG (Tokai U.) Kanta Shimizu (Tokai U.) Yu Matsumoto (Tokai U.) Panuwong Wongnim (Tokai U.) Haruma Ishida (JMA/MRI)

> > EarthCARE Workshop in 2023

Introduction

 Clouds exert an important influence on the *water* and *energy* balances and processes, thus, more observations are required for understanding of *cloud lifecycle*.

e.g. Randall et al. (1984) pointed out that a mere 4% increase of the Earth's area covered by low-level clouds, compensates for a projected 2–3 K rise in global temperature due to a doubling of CO_2 .

- We have long history of the passive sensing of clouds, using the NOAA, ADEOS-2, TRMM, Terra/Aqua, and Geostationary satellites ...
- Recently, active sensing open the door toward better understanding of clouds, in terms of cloud evolution process.

Introduction

Satellites

Algorithm

CFODD

Summary

3

Directions of the cloud research

- Long term record → climate change study AVHRR, MODIS, VIIRS, GLI, GCOM, Geostationary...
- 3-D observation → cloud evolution process *CloudSat, Calipso, EarthCARE, + Passive sensors*
- Observation + Model simulation...

EarthCARE

EarthCARE

- will be launched in middle 2024.
- has Cloud Profiling Radar (CPR), Multispectral Imager (MSI), Broad Band Radiometer (BBR)

Illingworth, A., and Coauthors, 2015: THE EARTHCARE SATELLITE: THE NEXT STEP FORWARD IN GLOBAL MEASUREMENTS OF CLOUDS, AEROSOLS, PRECIPITATION AND RADIATION. Bulletin of the American Meteorological Society, 96, 1311-1332.

	λ (μm)	Δλ (μm)
Visible channel	0.67	0.02
NIR channel	0.865	0.02
SWIR1 channel	1.65	0.05
SWIR2 channel	2.21	0.10
TIR1 channel	8.8	0.9
TIR2 channel	10.8	0.9
TIR3 channel	12.0	0.9
Swath width	150 km	
Spatial sampling distance	500 m	
Spatial co-registration	0.15 SSD	
Radiometric accuracy	10 % or 1 K	
Inter channel accuracy	1 % or 0.25 K	
Radiometric stability	1 % or 0.3 K/year	

Table 5. Key performance parameters of MSI.

Figure 28. The MSI Optical Bench

MSI cloud product process

A-Train : CloudSat + Aqua/MODIS

CLAUDIA algorithm (for cloud flags)

Table 6. Individual Tests and Threshold Polar Threshold Threshold Threshold Rmin+0.12x0.075 R0.67 (land or polar) or R0.87 ocean) R0.87/R0.67 R min +0.18x0.075 R min +0.16T0.04 $0.78 \pm 0.12 1.25 \pm 0.1$ $0.78 \pm 0.12 1.4 \pm 0.3$ (R0.87 - R0.67)/(R0.87 + R0.67) $-0.16 \pm 0.06 \ 0.34 \mp 0.12$ $0.16 \pm 0.06 0.34 \pm 0.12$ $-0.2 \pm 0.02 \ 0.4 \pm 0.05$ 0.96 ± 0.1 1.86 ∓ 0.12 R0 87/R1 6 R1.24/R0.55 SW BT3.9-BT3. >-11[K SW BT11-BT3.7 >-15[K

2.970.1

- 15K

297.5[K]∓5[K]

220[K]=10[K]

-20[K]∓4[K

224 K 74 K

0.2 0.4 0.6 0.8

Clear Confidence Level

0.0

< 0.08

267[K]∓6[K] 0.04∓0.01 220[K]∓10[K]

-8[K]∓4[K

226 K 74 K

and upper limit are x-y and x+y, r

CAPCOM algorithm (for cloud properties)

Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. Journal of Geophysical Research-Atmospheres. 114, doi:10.1029/2008JD010710.

-7[K]∓3[K]-

ral test SW der

Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616

Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52, 4043-4059.

Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14, 2054-2068.

Summary

R0.905/R0.932

SW BT11.BT3.7

SW R0.905

BT11 R1.38 BT6.7

BT11-BT3.9

BT13.9

 $x \mp y$ denotes that the lo

9

New visualization method of the radar reflectivity, CFODD (Contoured Frequency by Optical Depth Diagram)

Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci., <u>67</u>, 1897-1907.

Visualizing Cloud Growth from space

Nakajima et al. (JAS, 2010b), Suzuki et al. (JAS, 2010b)

11

The Global CFODD obtained by A-Train (CloudSat+Aqua)

Global (Land) Global (Ocean)

Satellite Data (April, 2007 to 2014)

Matsumoto et al. 2022

Diagnosis of the Aerosol Effects using CFODD

Suzuki, K. J-C. Golaz, G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations, Geo. Res. Lett., 40, 4464-4468.

Summary

Clouds exert an important influence on the *water* and *energy* balances and processes, thus, more observations are required for understanding of *cloud lifecycle*.

e.g. Randall et al. (1984) pointed out that a mere 4% increase of the Earth's area covered by lowlevel clouds, compensates for a projected 2–3 K rise in global temperature due to a doubling of CO₂.

- Need more observations of clouds from satellites for
 - generating cloud climatology database
 - investigating cloud evolution process
- □ The CFODD presents
 - cloud evolution process, clearly.
 - results are consistent with past studies by TRMM, ADEOS2, MODIS.
 - useful for model evaluations.
- A Doppler capability of the EarthCARE/CPR improves our understanding of cloud evolution process (2024-).
- 3rd generation geostationary satellites will observe time-series of cloud evolution, every 2.5 min to 10 min.

References

- Randall, D. A., J. A. Coakley, Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 1290–1301.
- Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences, 52, 4043-4059.
- Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. Journal of Climate, 14, 2054-2068.
- □ Ishida, H., and T. Y. Nakajima, 2009: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010710.
- Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size. J. Atmos. Sci., 67, 1884-1896.
- Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci., 67, 1897-1907.
- Nakajima, T. Y., T. Tsuchiya, H. Ishida, and H. Shimoda, 2011: Cloud detection performance of spaceborne visible-to-infrared multispectral imagers. Applied Optics, 50, 2601-2616
- Eguchi, K., I. Uno, K. Yumimoto, T. Takemura, T. Y. Nakajima, M. Uematsu, and Z. Liu, 2011: Modulation of cloud droplets and radiation over the North Pacific by sulfate aerosol erupted from Mount Kilauea. SOLA, 7, 77-80
- Suzuki, K. J-C. Golaz, G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations, Geo. Res. Lett., 40, 4464-4468.
- Illingworth, A., and Coauthors, 2015: THE EARTHCARE SATELLITE: THE NEXT STEP FORWARD IN GLOBAL MEASUREMENTS OF CLOUDS, AEROSOLS, PRECIPITATION AND RADIATION. Bulletin of the American Meteorological Society, 96, 1311-1332.
- Nakajima, T. Y., and Coauthors, 2019: Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog Earth Planet Sci 6:52.
- Matsumoto, Y., M. Wang, Y. Sato, and T. Y. Nakajima, 2023: Regional dependency of the cloud droplet growth process in combined analysis of Aqua MODIS and CloudSat CPR. SOLA, 19, 63-69.

CFODD