

Geolocation and co-registration of the EarthCARE CPR and ATLID instruments

Bernat Puigdomènech Treserras and Pavlos Kollias McGill University

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop

13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Introduction

Instrument geolocation plays a critical role in achieving the objectives of the EarthCARE mission

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Introduction

The **Attitude Determination System** (ADS) is designed to deliver precise satellite geolocation and pointing information. However, errors or factors like thermoelastic distortions can lead to miscalibration errors.

Actual measurements can help validate and assess the geolocation of each instrument. Co-registration is especially important, as the measurements are combined in the synergistic algorithms.

A detailed analysis will be conducted on data collected over Natural Targets, such as coastlines and areas with significant elevation gradients, to asses and validate the geolocation of each instrument.

Objectives

The **absolute geolocation error** for the EarthCARE L1b products should be less than 500m and 350m (goal 200m) for the co-registration

Data Acquisition

Establish a reliable representation of the Earth's surface / test with actual measurements

Digital Elevation Model

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (NASA's Terra satellite)

Copernicus

EU Space Programme (TanDEM-X satellite)

1-arc seconds resolution (~30m)

GSHHG

A Global Self-consistent, Hierarchical, High-resolution Geography Database

ASTER and **Copernicus** Water Body Masks (ocean, rivers and lakes)

Coastlines

Measurements

CloudSat 2B-GEOPROF (2006-2019)Good quality profiles / no clouds

CALIPSO LID_L2_333mMLay-Standard-V4-51 (2006-2019)Good quality profiles / surface detection

Real-time extraction of geospatial information along a specified orbit path; coastline identification and convoluted DEM

Orbit Mapper

Real-time tracking of EarthCARE's sun-synchronous orbit location and phase (utilizing TLE information)

CloudSat - 24/11/2007 03:41:30

Real-time extraction of geospatial information along a specified orbit path; coastline identification and convoluted DEM

Orbit Mapper

Real-time tracking of EarthCARE's sun-synchronous orbit location and phase (utilizing TLE information)

0

eesa LAXA

The signal captured by the instrument over the coastline is not always useful, it is often excessively noisy

Real-time extraction of geospatial information along a specified orbit path; coastline identification and convoluted DEM

Orbit Mapper

Real-time tracking of EarthCARE's sun-synchronous orbit location and phase (utilizing TLE information)

-100

0

eesa AXA

100

CloudSat - 24/11/2007 02:35:30

The signal captured by the instrument over the coastline is not always useful, it is often excessively noisy

Real-time extraction of geospatial information along a specified orbit path; coastline identification and convoluted DEM

Orbit Mapper

Real-time tracking of EarthCARE's sun-synchronous orbit location and phase (utilizing TLE information)

eesa LAXA

A clear ocean/land gradient must be available in order to effectively use the signal for the geolocation studies

Clear coastlines

Identify coastal scenes with high gradients (i.e. flat deserts adjacent to ocean), using the CloudSat measured surface backscatter (σ_0)

ean

The sigma-zero distributions for land and ocean are characterized by their μ and σ . Optimal coastal scenes are identified by analyzing the distribution intersection, searching for regions with minimal overlap

South Australia

Coastline geolocation

Geolocation Assessment Algorithm for CALIPSO Using Coastline Detection

J. Chris Currey Langley Research Center, Hampton, Virginia

The coastline signature is modelled using a cubic fit. The inflection point is considered to be the actual location of the coastline

CALIPSO

2007/12 - 2019/12 3° off-nadir along-track

CloudSat

2006/09 - 2019/12 0.16° off-nadir along-track

Eclipse 35070 detections Geolocation offset: 41m

19328 detections Geolocation offset: 197m

Coastline geolocation

Downhill simplex minimization approach

of detections and the map

Coastline geolocation

Downhill simplex minimization approach

of detections and the map

Somalia

Downhill simplex minimization approach

of detections and the map

Downhill simplex minimization approach

of detections and the map

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Downhill simplex minimization approach

of detections and the map

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

eesa LAXA

Significant elevation gradients

Areas with significant elevation gradients, such as mountains and valleys, identified by convoluting the global DEM with the EarthCARE CPR footprint and selecting the regions that exhibit a higher number of σ points surpassing the threshold of 100m

CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing

Simone Tanelli, Stephen L. Durden, Senior Member, IEEE, Eastwood Im, Fellow, IEEE, Kyung S. Pak, Dale G. Reinke, Philip Partain, John M. Haynes, and Roger T. Marchand

Compare the instrument's surface detection height to the reference DEM

Clear coastlines

Areas with with significant elevation gradients

Significant elevation gradients

Comparing the CPR and ATLID surface detection height to the reference DEM convoluted with the instrument's footprint

geolocation error is found by minimizing the RMS error

CloudSat

LAXA

Over the Himalayas

Antenna Pointing Characterization

Exploiting the CPR Doppler capability

Spaceborne Doppler Radar Measurements of Rainfall: Correction of Errors Induced by Pointing Uncertainties

SIMONE TANELLI, EASTWOOD IM, AND SATORU KOBAYASHI

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

ROBERTO MASCELLONI AND LUCA FACHERIS

Dipartimento Elettronica e Telecomunicazioni, Università di Firenze, Firenze, Italy

Using Ice Clouds for Mitigating the EarthCARE **Doppler Radar Mispointing**

Alessandro Battaglia, Member, IEEE, and Pavlos Kollias

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

LAXA

80

Co-registration

The individual geolocation analyses for each instrument will be combined to assess potential mis-registration. The analysis will be extended to the passive instruments

- **Combine** the individual geolocation statistics of each instrument 1)
- Minimize the distance between detections from each instruments 2)
- 3) Compare the surface height detection of the active instruments

EarthCARE CPR and ATLID surface height detection

Co-registration

