Session 4

Integrating Radiative Transfer and Hybrid Deep Learning for the Modeling of Disturbing Factors and Advancing EO-based Soil Organic **Carbon Retrievals**

Robert Milewski¹, Asmaa Abdelbaki¹, Sabine Chabrillat^{1,2}

¹ Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences ²Leibniz University Hannover, Institute of soil science

ESA Symposium on Earth Observation for Soil Protection and Restoration

Motivation: From laboratory to EO scale

- Increasing availability of large Soil Spectral Libraries (SSL)
- Basis for accurate estimation of soil parameters
- However: Dynamic surface conditions at the EO scale

(1) Young emerging crops

Surface roughness & crusting

 Aim: Simulation of "landscape-like" reflectance spectra (Spatially Upscaled Soil Spectral Libraries: SUSSL) → Improve data basis for spectral soil modelling

Modelling of dynamic surface conditions

- LUCAS 2015 SSL for croplands: 8,869 soils
- Coupling of radiative transfer models (RTM)
 - MARMIT 2.0
 PROSPECT-4 & 4SAIL2
- Simulate wet soils and mixed soil-vegetation scenarios 822,572 spectra

Impact of dynamic surface conditions

- Limitation of spectral indices for detection of 'bare soil' conditions
- > Mixed spectral information remain at the EO scale

ESA Symposium on Earth Observation for Soil Protection and Restoration, 06 – 07 March 2024, ESA-ESRIN, Frascati (Rome), Italy

Estimation of SOC using 1-D CNN

• Baseline 1D-CNN trained on LUCAS 2015 bare soil spectra

- 1-D convolutional neural network (CNN)
 - 3 convolutional layers and 3 fully connected layers (after Tsakiridis et al., 2020)
 - Single input (soil reflectance, 1 nm resolution)
 - No systematic hyperparameters optimization
- Cal/Val/Test Split: 80/10/10
- Trained in 1,000 epochs
- Accuracy in line with Deep Learning of other large SSL, e.g., USDA RaCA SLL (Wang et al,. 2022)

Estimation of SOC using spatially upscaled SSL

- Training of 1D-CNN of 'disturbed' soil spectra (SUSSL)
- ID-CNN is able to model SOC even in strongly disturbed cases with acceptable loss in accuracy
 CNN high PV (LAI=1) and SM (~7%)
 CNN high NPV (LAI=1) and SM (~7%)

Conclusion & Outlook

- Challenging surface conditions at the EO scale are an essential factor for the decrease in SOC prediction accuracy
- Filtering approaches using spectral indices can only differentiate the most heavily disturbed cases
- Development of "landscape like" SSL provides test ground for testing of correction methods → Improvement of soil spectral models

Outlook:

- Application of the hybrid modelling approach to hyperspectral EO data (e.g., EnMAP)
- Including further "disturbances", e.g., soil roughness and crusting
- Comparison with spectral unmixing based approaches

milewski@gfz-potsdam.de

Integrating Radiative Transfer and Hybrid Deep Learning for the Modeling of Disturbing Factors and Advancing EO-based Soil Organic **Carbon Retrievals**

Robert Milewski¹, Asmaa Abdelbaki¹, Sabine Chabrillat^{1,2}

¹ Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences ²Leibniz University Hannover, Institute of soil science

ESA Symposium on Earth Observation for Soil Protection and Restoration

Impact of dynamic surface conditions

NBR2 shows slightly higher potential for filtering NPV affected soil spectra ullet

Leibniz