WIVERN: a Mission to Observe Global in-cloud Winds, Clouds and Precipitation as part of the ESA Earth Explorer 11 Programme

PROBING CLOUDY SKIES FOR A WIND OF CHANGE

A. Illingworth, **A. Battaglia**, and all the WIVERN MAG and ESA team

wivern

Politecnico alessandro.battaglia@polito.it

ESA Earth Explorer 11 roadmap

CAIRT: unravel the intricate connections between circulation and composition through the middle atmosphere. NITROSAT: detecting reactive nitrogen from farms, industries, transport, fires and urban areas. SEASTAR: observing small-scale ocean dynamics in coastal areas, shelf seas and the marginal ice zone.

WIVERN: deliver the first space-based observations of **in-cloud winds**.

Why WIVERN? The next decade perspective

💻 🔜 🛃 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🔚 🚛 🚳 🍉 📲 🚼 💼 📾 🖬 🖬 👘 🔶 The European Space Agency

Three Scientific Pillars of WIVERN

Wind	Can we measure 3-dimensional winds within clouds to better define the state of the Earth's atmosphere and its dynamics on a global scale?
Clouds & Precipitation	Can WIVERN improve clouds and precipitation representation in the next generation of km scale global models, and enhance confidence in our prediction of regional climate change?
Convection	Can WIVERN help better understanding the dynamics of convection and its impact on moisture transport?

The science impact question: can WIVERN also demonstrate a significant positive impact on weather forecasting?

💻 🔜 🛃 🚍 🛲 🕂 🛛 🗮 🧮 🔜 🛛 🖉 🗮 🚍 📲 🚍 👞 🚳 🍉 📲 🗮 🚍 🐽 🚳 🐂 🛤

How? The WIVERN Instrument

- ➢ W-band (94 GHz, -15 dBZ single-pulse sensitivity, -20 dBZ @1 km integration)
- > 500 km altitude, conically scanning at 42° (830 km swath), ~12 rpm (8 pulses per km)
- > Doppler (polarization diversity, T_{HV} =20 µs) for up to ±40 m/s line-of-sight (LoS) horizontal winds
- ▶ Big >3 m antenna ($\theta_{3dB} \approx 0.07^{\circ}$) (vertical resolution of 600 m, horizontal < 1km),
- Radiometric mode with km-scale resolution and ~2 K relative accuracy
- > Polar orbit with 1.5 day average revisit time

Through what? WIVERN L2 Data Products

E Sector Space Agency

Horizontal Line-of-Sight Wind

https://dev.explorer.wivern.adamplatform.eu/

💳 🔜 🖬 🔚 🔤 📥 📲 📲 🔜 📲 🔚 🔚 📥 🚱 🍉 📲 🗮 🔜 📾 🖓 📩 🖬 🖉

Horizontal Line-of-Sight Doppler velocity error budget

WIVERN + Aeolus-2: complementary Impact

- The assimilation of Aeolus (spaceborne Doppler lidar) clear-air and Mie winds significantly improved the forecasts of NWP models (e.g. Rennie et al., 2021) → wind obs provide the largest impact per observation
- Does the assimilation of the WIVERN in-cloud winds further improve NWP forecast accuracy?

Z&T_B-based products: snowfall rate

- □ Snowfall is paramount to understand cryosphere (ice sheet mass balance) and the energy budget in polar regions (latent heat).
- Radar retrievals based on well established power-laws: Snow Rate=f(Z,T)
- CloudSat was the best source for snowfall climatology and training datasets but poor sampling Kulie et al., 2020

Three advantages of WIVERN

- 1. 70 times better spatial sampling than CloudSat and upcoming EarthCARE due to scanning
- 2. Radiometer mode & polarimetric measurements can reduce uncertainties
- 3. Reduced ground clutter blind zone especially over ocean

Gauging the anvil mass in organized mesoscale systems .

→ THE EUROPEAN SPACE AGENCY

Gauging the anvil mass in organized mesoscale systems @esa

→ THE EUROPEAN SPACE AGENCY

Gauging the anvil mass in organized mesoscale systems @esa

→ THE EUROPEAN SPACE AGENCY

Conclusions and outlook

- WIVERN was one of the 4 ESA EE11 candidate missions, now recommended for Phase A by ACEO
- Hinges upon a single cutting-edge conically scanning W-band radar with polarization diversity
 Doppler → large Nyquist for sampling winds in high-impact weather such as tropical cyclones
- Flagship product: vertically resolved in-cloud winds over a large swath → plenty of accurate (<3m/s) winds (>2 million line of sight wind measurements at 20 km resolution per day) with a significant impact on data assimilation (complement Aeolus 2 in cloudy mid/low troposphere)

Synergy/complementarity with EC

- EarthCARE: characterization of W-band vertical Doppler (NUBF corrections, sedimentation)
- WIVERN: extension of mass-important cloud/precipitation products for climate record (no other 94 GHz proposed for 2030-40 decade), lower sensitivity but 30-40 times better sampling(revisit each 20x20 km² box on average every 1.6 days at the equator and daily at mid-latitudes).
- Possible synergistic activities
- Algorithm development (e.g. warm rain/convective snowfall, based on Z&T_B)
- Development of synergy with GEO (e.g. for convection/anvil characterization)
- CAL/VAL and data assimilation of Z and T_B (EDA experiment planned for WIVERN at ECMWF)

Thanks for the attention

eesa

Paper and info @ www.wivern.polito.it

WUUGAN PROBING CLOUDY SKIES FOR A WIND OF CHANGE

«The future's in the air I can feel it everywhere blowing with the wind of change» from Wind of change by Skorpions