

Dust aerosol mineralogy retrieved from its infrared optical signature: a laboratory study highlights the potential of infrared remote sensing for aerosol climate studies

C.Di Biagio¹, J.F. Doussin¹, M. Cazaunau¹, E. Pangui¹, J. Cuesta¹, P. Sellitto^{1,2}, M. Ródenas³ and P. Formenti¹ ¹LISA CINRS, Creteil, France; ² INGV, Catania, Italy ; ³ EUPHORE Labs., Valencia

Mineral dust : a global phenomenon with multiple effects on the climate system

A sandstorm over the Sahara desert in Africa seen by ESA astronaut Alexander Gerst from the International Space Station

· eesa

https://www.esa.int/ESA_Multimedia/

Mineral dust : a global phenomenon with multiple effects on the climate system

A sandstorm seen by ESA astronaut Thomas Pesquet from the International Space Station

Https://www.flickr.com/photos/thom_astro/51277374457/in/photostream/

💳 🔜 📕 🛨 💳 📲 📲 📕 🏣 📕 📕 🔤 👬 💳 🗰 🚳 🔽 📲 👫 🛨 🖬 ன 🖉 🖬 👘

Mineralogy is central in ruling dust effects

Solubility

Radiation interactions

· e esa

💳 🗖 📕 🛨 💳 💶 📲 📕 🏣 📕 📕 💳 👭 🔚 💳 🗧 🔤 🚳 🖕 🚺 👫 🕂 🖬 💳 📰 🐷 🖅 🚺 🔸 🕂 The European Space Agency

Dust mineralogy varies at the global scale

Surface soil mineralogy

→ THE EUROPEAN SPACE AGENCY

Dust mineralogy varies at the global scale

Dust mineralogy varies at the global scale

💳 💶 📕 🛨 💳 💶 📲 📕 🏣 🔜 📲 🔚 💳 👬 🔤 🔤 🚱 🔽

Simulation chamber experiments on mineral dust

Aerosol resuspension by mechanical shaking of parent soils

Natural soil samples

Di Biagio et al., 2014, 2017, 2019

Experiments on worldwide dust sources

·eesa

Mineral signatures found in IR extinction spectra

· eesa

Mineral signatures found in IR extinction spectra

🙂 🎦 🍁 🛛 🔸 THE EUROPEAN SPACE AGENCY

· e e sa

Can we retrieve dust mineralogy based on extinction spectra in the 740–1250 cm⁻¹ (8 – 12 µm) IR window?

→ THE EUROPEAN SPACE AGENCY

Can we retrieve dust mineralogy based on extinction spectra in the 740–1250 cm⁻¹ (8 – 12 µm) IR window?

It works! Example of Tunisian dust

It works! Example of Australian dust

→ THE EUROPEAN SPACE AGENCY

- -Residuals
- $D_{eff} = Effective diameter$

Coarse size depletion by gravitational settling

Agreement of retrieved « optical » mineralogy against X-Ray Diffraction analyses

Di Biagio et al., 2023

LSM = Linear Spectral Mixing XRD = X-Ray Diffraction

Phyllosilicates (% wt) a) C) 100 Feldspars (% wt) 30 20 10 60 b) Quartz (% wt) Calcite (% wt) d) 40 30 40 20 20 10 Tunisia Morocco Saudi Arabia ^Taklimakan Namib-1 Morocco Ma_{uritania} Saudi Arabia Taklimakan Libya M_{auritania} Bodele Ethiopia Kuwait Gobj P_{alagonia} Namib-2 Tunisia Libya M_{ali} Bodele Ethiopia Kuwait At_{acama} P_{atagonia} Alge_{ria} Mali At_{acama} A_{ustralia} Alge_{ria} Gobj Arizona Namib-2 Arizona Niger Namib-1 A_{ustralia} Ni_{ger}

→ THE EUROPEAN SPACE AGENCY

- IR extinction spectra can be used to retrieve the global-scale features of dust mineralogy, in particular its coarse component (quartz, feldspars, clays, calcite)
 - Different extinction signatures enable to distinguish dusts with different origins and compositions
 - Modifications of the dust extinction spectra with time can inform on the size-dependent particles mineralogy changes during transport
- The present analysis supports the use of IR remote sensing spectral and hyperspectral observations (such as those of IASI & IASI-NG & FORUM) to measure the size-segregated mineralogy of global dust
 - > Need further fundamental studies on both natural dust and single minerals!
 - > Application of the methodology to real IR remote sensing observations is needed!!

Conclusions and perspectives

IR remote sensing can complement UV-VIS-NIR retrievals from the **EMIT NASA mission** (sensitive only to fine-sized dust components: clays, iron oxides, carbonates)

