

Agricultural Crop Height Retrieval From ICESat-2

Xiaomei Lu, Yongxiang Hu, Ali Omar, Mark Vaughan, Chip Trepte NASA Langley Research Center, Hampton, VA, USA

Acknowledgments:

• supported by ICESat-2 team and Dr. Thorsten Markus of NASA HQ.

Outline

- CALIOP/CALIPSO, ATLAS/ICESat-2, ATLID/EarthCARE
- The revised Density-Dimension Algorithm (DDA) (identify crop and land surface photons to get crop height)
- Crop results
 - (Spring Crops, Fall Crops)
- Summary and Future work

CALIPSO => ICESat-2 => EarthCARE =>

Lidar	CALIPSO	ICESat-2	EarthCARE	CALIGOLA under consider
	2006 ~ 2023	2018 ~	2024 ~	~2032
Wavelength (nm)	532, 1064	532	355	355, 532, 1064
Channels	Polarization	Elastic	HSRL,	Polarization, Raman (407.5,
			Polarization	650). Fluorescence(450,685)
Vert. Res.	30 m	Photon counting	~103 m	~ 1.25m
Spatial Res.	1/3 km	0.7 m	285 m	75~150 m
Off angles	0.3°, 3°, 30°	up to 5°	3°	12°

ICESat-2 separate photons from canopy and snow surfaces

Snow depth retrieval below Trees

Hu et.al, 2022, Lu et.al., 2022

· e e sa

Can ICESat-2 provide crop height?

Accurate crop height measurements can help estimate yield potential and overall agricultural productivity

• (2)

• Monitoring crop height is crucial for optimizing agricultural practices and ensuring food security.

Spring Crop

Fall Crop

· e e sa

Crops introduce bias in surface height in ATL06

· e e sa

20190420@beam 1 294 Crops in April, 2019 а ATL03 photon Surface bias due to ATL06 20190420 ATL06 20191018 crop: ~0.5m 289 22,194 22.196 22.198 22.2 22.202 22.204 22.206 22.208 22.21 294 After Harvest in ATL03 photon October, 2019 ATL06 20190420 ATL06 20191018 289 22.194 22.196 22.198 22.2 22.202 22.204 22.206 22.208 22.21

The revised Density-Dimension Algorithm (DDA)

Distance between photons (p, c):

$$r_p = \sqrt{[(x_p - x_c)/\alpha]^2 + (y_p - y_c)^2}$$

Weight function: $w(p) = e^{-\left(\frac{r_p}{\sqrt{2\sigma}}\right)^2}$ (0,1) Density of photon *c*: $f(c) = \sum_{p \in D} w(p)$

- α is an anisotropy parameter used to change the relative weights of the contributions made to r_p in the along-track and vertical directions.
- σ is the standard deviation, controlling contributions of r_p to w(p) and f(c).

 $H_{x'}$ are defined searching areas in two directions. Hy,

- U. C. Herzfeld et.al., 2014, 2017, 2023
- Lu et.al., 2024 under review

Typical values used in DDA-bathymetry and DDA-crop

Parameters	DDA-bathymetry	DDA-crop	
	Local peak method	Threshold method	
α	300	10	150 - 300
Hx (m)	2000	2000	50 - 100
Hy (m)	1	0.3	0.3
σ (m)	3	1	1

Sensitivity studies of parameter values for bathymetry and crop

Parameter	Lower	Higher
α	0.5	300
Hx (m)	20	2000
Hy (m)	0.3	3
σ (m)	0.5	5
q-quantile	0.02	0.40

Lu et. al., 2024, under review

NASA

· e e sa

EMIT measures the radiance in spectral bands from 381 nm to 2493 nm,

- In total 285 bands with ~7.4nm resolution;
- 60m spatial resolution ;
- A view swath of 75km;
- Between 52° North and South.

· e e sa

EMIT primary purpose:

To determine the sources of dust in the atmosphere

· e esa

eesa

•eesa

NASA

Crop results – in Spring

Crop results – Fall crop

· e e sa

NASA

Crop results – Fall crop

· e esa

Summary and Future work

- 1. Unique measurements of ICESat-2 lidar for
- Direct measure of Crop height
- Direct measure of water properties in upper ocean layers
- 2. Future work
 - Combine Images (Landsat, EMIT, Sentinel) with ICESat-2 => Global crop study, e.g., crop height, crop density, crop biomass.

· e esa

References

- 1. U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, "Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission," IEEE Trans. Geosci. Remote Sens. **52**(4), 2109–2125 (2014).
- 2. U. C. Herzfeld, T. M. Trantow, D. Harding, and P. W. Dabney, "Surface-Height Determination of Crevassed Glaciers—Mathematical Principles of an Autoadaptive Density-Dimension Algorithm and Validation Using ICESat-2 Simulator (SIMPL) Data," IEEE Trans. Geosci. Remote Sens. **55**(4), 1874–1896 (2017).
- 3. U. Herzfeld, A. Hayes, S. Palm, D. Hancock, M. Vaughan, and K. Barbieri, "Detection and Height Measurement of Tenuous Clouds and Blowing Snow in ICESat-2 ATLAS Data," Geophys. Res. Lett. **48**(17), e2021GL093473 (2021).
- 4. U. C. Herzfeld, T. M. Trantow, H. Han, E. Buckley, S. L. Farrell, and M. Lawson, "Automated Detection and Depth Determination of Melt Ponds on Sea Ice in ICESat-2 ATLAS Data—The Density-Dimension Algorithm for Bifurcating Sea-Ice Reflectors (DDA-Bifurcate-Seaice)," IEEE Trans. Geosci. Remote Sens. **61**, 1–22 (2023).
- 5. Lu et.al., 2024, "Bathymetry and Agricultural crop studies from ICESat-2: the Density-Dimension Algorithm", under review.