

Regional soil characterization through the integration of remote sensing, geophysics, and field data

ESA Symposium on Earth Observation for Soil Protection and Restoration

<u>Elke Fries</u>, Michaela Frei, Malte Ibs-von Seht, Lars Konen, Thomas Lege, Andreas Möller, Daniel Rückamp, Martin Schodlok

> Bundesanstalt für Geowissenschaften und Rohstoffe

07.03.2024

www.bgr.bund.de

BGR

Objective

Determination of **clay content** in soils of **different parent materials** in Germany by **gamma-ray spectrometry** and **hyperspectral imaging**

Motivation

- **Clay content in soils** influences nutrient storage, pollutant retention, soil fertility and erosion
- Spatial information on clay content provides important information on soil functions and soil degradation

ESA Symposium on Earth Observation for Soil Protection and Restoration, 06-07 March 2024, ESA-ESRIN, Frascati (Rome), Italy

Results (1): Handheld gamma-ray spectrometry

Clay content in **soils** of **different parent materials** was derived from measurements of **radioactive isotopes of potassium** (⁴⁰K) and **thorium** (²³²Th) using **handheld gamma-ray spectrometry**

Training data set (70%: n=139)

$$Clay_{predicted} = c_1 * factor pm + c_2 * K + c_3 * Th/K + c_4 * Th$$

Factor_pm: Soil parent material specific factor K: Potassium Th: Thorium

 1000 iterations

 Mean RMSE:
 8.37 %

 Mean MAE:
 6.04 %

Ground truthing:

Soil sampling

- n=195

- Depth: 0-4 cm

Laboratory analyses

- **Clay content**: particle-size fractionation
- **K content:** X-ray fluorescence analysis (XRD)
- **Th content:** Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

Results (2): Helicopter gamma-ray spectrometry

BGR

- Helicopter gamma ray spectrometry was validated successfully by handheld gamma-ray spectrometry
- Clay content in soils was measured successfully by helicopter gamma-ray spectrometry
- **Boundary effects** close to forests have to be considered

Study site: Ellierode (Harzvorland)

ESA Symposium on Earth Observation for Soil Protection and Restoration, 06-07 March 2024, ESA-ESRIN, Frascati (Rome), Italy

Results (3): Hyperspectral imaging

Hyperspectral imaging was successfully applied to predict clay content in soils from laboratory data, airborne data and satellite data

	R ² training	R ² validation	RMSE training	RMSE validation
Laboratory	0.98	0.97	0.94	1.52
Airborne	0.84	0.53	2.73	4.30
Satellite	0.85	0.88	2.57	2.01

ESA Symposium on Earth Observation for Soil Protection and Restoration, 06-07 March 2024, ESA-ESRIN, Frascati (Rome), Italy

Usability of results

- Gamma-ray spectrometry and hyperspectral imaging are promising for mapping soil properties as clay content
- Gamma- ray spectrometry completes hyperspectral imaging in the top soil down to 30 cm depth
- Combination of both methods can provide continuously updated spatial soil data at local and regional scales
- In particular, **satellite hyperspectral imaging** can support land use planning and soil protection at **inaccessible areas** impacted by ongoing conflicts or munition residues

