

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036401

Monitoring Soil Organic Carbon and other soil variables in Otjozondjupa. A Case Study of the SteamBioAfrica project.

Blanco-Velázquez, Francisco José; Alonso Martín, Fernando; Bravo García, Javier; González Peñaloza, Félix and; Anaya-Romero, María.

Affiliation: EVENOR-TECH, SLU (Spain)

ESA Symposium on Earth Observation for Soil Protection and Restoration

Project objective

Innovative Large-Scale Production of Affordable Clean Burning Solid Biofuel and Water in Southern Africa: transforming bush encroachment from a problem into a secure and sustainable energy source (SteamBioAfrica: GA: 101036401)

Develop a commercially viable technology solution that will stimulate the harvesting of invasive woody biomass

15 partners in 8 countries

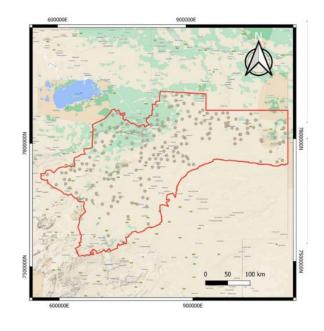
Environmental objectives

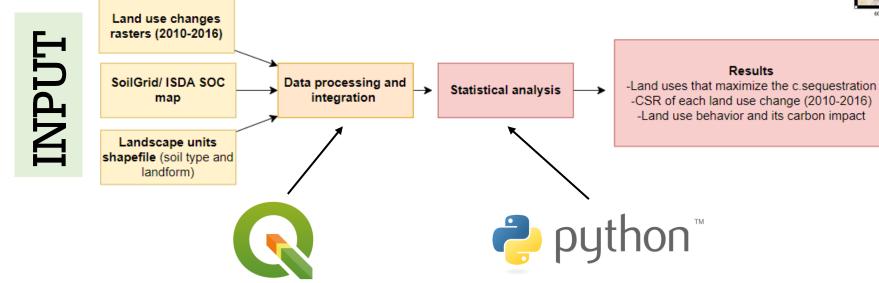
1) Compiling, harmonizing and standardizing data related to Ecosystem Services (including C sequestration)

2) Establishing a ES baseline and impacts' prediction on future scenarios (LULC

and CC)

3) Developing a monitoring approach

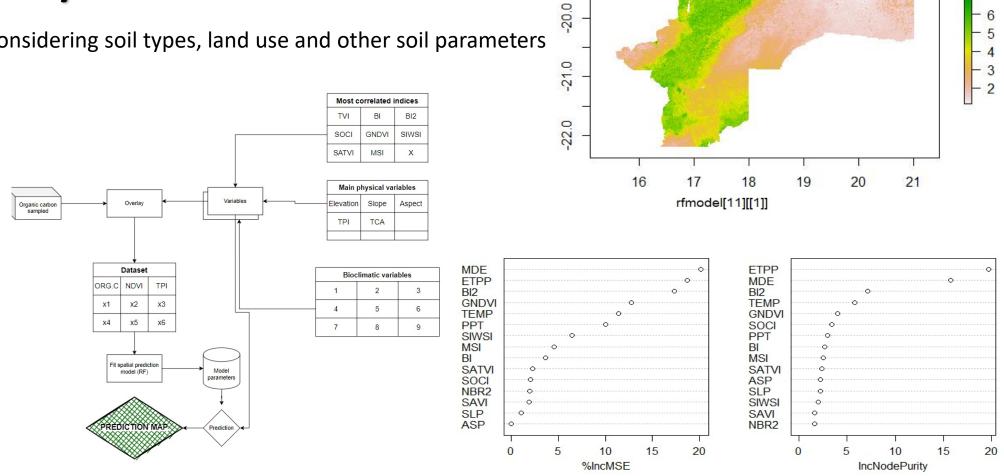




Methodology

One large area in Otjozondjupa (Namibia) and validation area (Cheetah Conservation Fund) Soil dataset: SOC, pH, Clay, BD (0-30cm) → 2016 VS validation datasets (2020)

Satellite dataset: Sentinel 2 (Level 1-C)

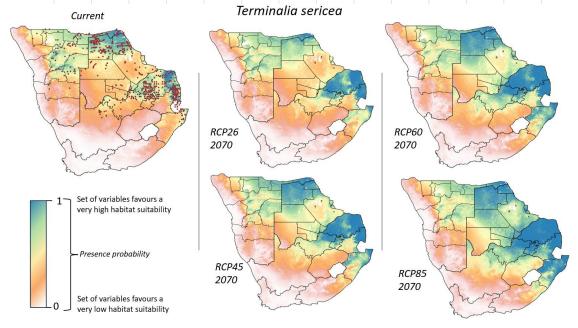


ESA Symposium on Earth Observation for Soil Protection and Restoration, 06 – 07 March 2024, ESA-ESRIN, Frascati (Rome), Italy

Preliminary results

SOC maps developed considering soil types, land use and other soil parameters

-19.0


Future scenarios

Land use Change scenarios + Distribution suitability maps

To develop sustainable business models potentially to relate with carbon farming practices

Upscaling process to evaluate opportunities in médium and long-term of carbon farming practices based on monitoring and clean technologies

		Carbon sequestration rate (t ha-1 yr-1)									Carbon sequestration rate (t ha-1 yr-1)					
	Arenosols	Calcisols	Cambisols	Gypsisols	Leptosols	ROCK	Regosols				Arenosols	Calcisols	Cambisols	Gypsisols	Leptosols	ROCK
Shrubland land a bare areas	0.595792	0.179223	-0.64262	-0.07557	-0.34288	-0.98121	-0.35116		Bare are	as a built	1.19856	0.794257	0.161924	0.630414	1.375072	0.532079
Shrubland land a built up areas	-2.46956	0.47781	-0.80975	-0.12879	0.687743	-0.85658			Bare a	reas a fore	-0.257	0.747725	0.372899		0.81414	1.259188
Shrubland land a cropland	-2.46956		0.392497		0.697267	-3.95487			Bare a	reas a gras	0.374389	0.3906	0.25759	0.032823	0.330867	0.39109
Shrubland land a forest land	-0.18598	0.016895	0.17085		-0.15554	-0.14943	0.944208		Bare a	eas a oper	1.483745	0.142526	1.566502	0.205094	1.288419	0.405112
Shrubland land a grassland	0.171801	0.110196	-0.46048	-0.18603	0.087431	-0.08331	-0.13558		Bare a	reas a shru	0.185272	0.408399	0.117189	0.072506	0.248784	0.351146
Shrubland land a sparse vegetation	0.706908	0.731247	-0.63038	-0.24602	-0.11584	-0.39302	-0.67701		Bare areas	a sparse v	0.077565	0.237284	0.024088	0.039024	0.149864	0.157747
Shrubland land a wetland	-2.46956	0.455587	0.70392		0.971711	1.352037	0.65051									
		Carbon sequestration rate (t ha-1 yr-1)									Carbon sequestration					na-1 yr-1)
	Arenosols	Calcisols	Cambisols	Gypsisols	Leptosols	ROCK	Regosols				Arenosols	Calcisols	Cambisols	Gypsisols	Leptosols	ROCK
Bare areas a shrubland	0.185272	0.408399	0.117189	0.072506	0.248784	0.351146	0.220624		Cropl	and a bare	areas		-0.65908		-1.2761	
Cropland a shrubland			0.148706		-0.04787				Forest land a bar		e areas	-1.54902	-0.96835		-1.99853	-1.37103
Forest land a shrubland		-0.52298	-0.02767		-1.07343	-0.62702	-1.54873		Grass	and a bare	0.297374	-0.1556	-0.33658	0.108201	-0.02073	-0.37019
Grassland a shrubland	-0.13884	-0.04159	-0.22138	0.163072	0.448884	0.250437	0.043023		Shrublar	nd land a ba	0.595792	0.179223	-0.64262	-0.07557	-0.34288	-0.98121
Sparse vegetation a shrubland	0.173881	0.237667	0.283878	-0.09552	0.131958	0.097514	0.280923		Sparse ve	getation a	-0.13601	-0.22552	0.117359	-0.12677	0.045524	-0.14573

Thank you for your

attention

Name: Francisco José Blanco Velázquez

Email: fj.blanco@evenor-tech.com

Web: https://evenor-tech.com

SteamBioAfrica:

https://www.steambioafrica.com/

Acknowledging our partners

ESA Symposium on Earth Observation for Soil Protection and Restoration