

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13-17 November 2023, ESA-ESRIN, Frascati (Rome), Italy

An overview of the use of EarthCARE products within the EUMETSAT validation facility for Level 2 Cloud and Aerosol products

Alessio Bozzo, <i>Loredana Spezzi** ,* Julien Chimot, Bertrand Fougnie, Pepe Phillips, Margarita Vazquez-Navarro

*Alessio.Bozzo@eumetsat.int ** Loredana.Spezzi@eumetsat.int

EUMETSAT - Remote Sensing & Products division-Clouds & Aerosols Competence Area

EUMETSAT missions and operational requirements

www.eumetsat.int

EUMETSAT provides operational atmospheric products, which implies:

- Reliability: more than 99% 24/7
- Timeliness: Near Real Time dissemination from sensing time >100 to 150min for LE0 >20min for GE0
- Quality control
- Continuity over the mission lifetime: maintenance of timeliness, quality standards, etc.
- Consistency between the different systems
- Maintenance of the accuracy of the retrieved geophysical parameters within user requirements (globally, day/night, all season, all surfaces, entire mission lifetime)

Some cloud and aerosol products at EUM **Satellite Application Facilities**: Nowcasting (NWC-SAF), Climate Monitoring (CM-SAF) and Atmospheric Composition (AC-SAF)

EUM/RSP/D0C/23/1386018, v1 Draft, 8 November 2023

Cloud Product map (missions & products)

			Operational		Operational (SAFs only)		In development		Not yet committed (under study/consideration)			n) Not A	Not Applicable			Possible (not yet in plan)						
Product/ Instrument	-	<u>Metop</u>		MSG	Se	entinel 3	3		_	Me	etop-S	G				N	1TG			_	<u>CO2M</u>	
	AVHRR	IASI	SYN	SEVIRI	OLCI	SLSTR	SYN	VII	ЗМІ	MWI	ІСІ	IASI-NG	S5 UVNS	SYN	FCI	S4 UVN	IRS	u	SYN	CLIM	МАР	SYN
Cloudy pixel identification									1													
Cloud phase																						
Cloud fraction		-																				
Cloud type																						
Cloud albedo																						
Cloud optical thickness																						
Liquid/Ice water path/content																						
Cloud particle effective radius																						
Ice habit																						
Cloud Top Oxygen Pressure																						
Cloud vertical extent from O ₂ and Rayleigh																						
Cloud top IR Pressure																						
Multi-layer cloud flag																						
Water vapour content																						

Aerosol Product Map (missions & products)

www.eumetsat.int

	Operational		In develop	ment	Not yet (unde	committe er study)	d No	t Applicable	Po (not y	ossible et in plan)			
Product/		Metop	MSG		Sentinel 3			Metop-SG		MTG		CO	2M
Instrument		РМАР	SEVIRI	OLCI	SLSTR	SYN	ЗМІ	S5 UVNS	МАР	FCI	S4 UVN	CLIM	МАР
Cloudy pixel identification			,										
Aerosol type													
Fine mode fraction													
Aerosol Optical Depth													
Aerosol Optical Depth (multi-band, i.e., Angstrom exponent)													
Single Scattering Albedo													
Refractive index – real													
Refractive index — imaginary													
Effective radius													
Aerosol height					•								
Aerosol Absorbing Index												-	
Side Product: BPDF													
Side Product: BRDF													

EUM/RSP/D0C/23/1386018, v1 Draft, 8 November 2023

Validation strategy, facility and reference data

Essential steps in the validation framework:

- Daily/automated download of reference products;
- Matching/colocation with reference products;
- Generation and storage of daily match files;
- Generation of comparison plots, statistics/skill scores, and Cal/Val reports, both daily and (if requested) over longer periods (i.e., by accumulating data over selected time intervals and/or locations)

Reference data for the validation of cloud and aerosol products:

Ref. data source	Clouds	Aerosols
Space-born active instruments	A-Train Aeolus EarthCARE	A-Train Aeolus EarthCARE
Ground-based observations	ACTRIS- Cloudnet*	ACTRIS (Aeronet, Earlinet)*
Products from other space-based passive sensors/algorithms	MODIS VIIRS ABI AHI	MODIS VIIRS TROPOMI
Model-based measurements	/	CAMS EMAC ICAP/AEROSAT

*Framework of the European Project ATMO-ACCESS (talk H. Baars)

Optimal Cloud Analysis for Single/Multi-layer (OCA products)

www.eumetsat.int

EUMETSAT cloud products based on optimal estimation framework (Watts et al. 2011) using radiances from imagers

- Retrieved: cloud top pressure, optical thickness, particle size, cloud phase
- Flexibility to add new channels and instruments (e.g. MTG/FCI, EPS-SG/METimage)
- Simplified fast look-up table approach RT model
- Multi layer retrieval.
- Full uncertainty estimate
- CTP mostly depends on thermal IR channels and temperature profile
- COT,CRE: extra constraint from solar channels

Validation of OCA vs. A-Train/DARDAR

Statistics over multiple orbits

Quantitative estimates of retrieval errors with statistics collected over multiple collocated orbits: Cross comparison of cloud optical thickness and near-top effective radius for ice clouds.

20.0 20.0 Single layer ice Single layer liquid 17.5 17.5 15.0 15.0 10¹ 90 12.5 11 Indu 12.5 10¹ (N)0100 н C 10.0 CH OCY 7.5 10.0 CTH OCA 7.5 5.0 5.0 2.5 2.5 0.0 100 0.0 100 20 15 20 10 15 10 0 0 CTH DD 1L ice CTH DD 1L liquid 20.0 20.0 2-layers upper 2-layers lower 17.5 10¹ 17.5 10¹ 15.0 15.0 nd layer CTH OCA 2L first layer 0.01 2 2.2 2.2 2.2 12.5 (N)0100) 10.0 CTH OCA 2L 7.5 5.0 5.0 2.5 2.5 0.0 100 0.0 100 10 15 20 10 15 20 0

CTH DD 2L second layer

Cloud top height validation

Ice cloud optical thickness and effective radius

EUM/RSF

CTH DD 2L first layer

Validation OCA vs. ACTRIS-Cloudnet (high time resolution)

Compared parameters:

- Current: cloud detection (single and 2-layers), cloud phase, top/base pressure, optical thickness
- Can be added: Liquid/Ice Water Content, ice particle effective radius
- Statistics is accumulated over several orbits/repeat cycles (as for A-Train)

FCI "dust" RGB

www.eumetsat.int

Examples of monitoring and validation of Aerosol Optical Depth

www.eumetsat.int

Metop/PMAP vs. AERONET over land

Metop/PMAP vs. MODIS and VIIRS over ocean

Adapted from "*Polar Multi-Sensor Aerosol Product (PMAP): Validation Re*port", EUMETSAT Doc. EUM/TSS/REP/14/745438 (Jan 2023) EUM/RSP/D0C/23/1386018, v1 Draft, 8 November 2023

Validation of Aerosol products with CALIOP

Support the analysis of problematic aerosol situations:

A diagnosis can be provided about an specific altitude of the layer, its vertical distribution, a multi-layer situation, the identification of aerosol over clouds, residual cloud contamination, etc.

CALIOP Total Attenuated Backscatter @532nm (from Aeris web site)

UTC: 2011-06-16 04:02:48.7 to 2011-06-16 04:

532 nm Total Attenuated Backscatter, km⁻¹ sr⁻¹

Nanda et al., AMT, 2019

Directly support the validation of aerosol layer height (ALH) from S3/OLCI (OLCOAH), 3MI, EPS-SG/MAP, etc.

- Provide a description of the vertical distribution – the definition of layer height usually remaining ambiguous
- Allow a quantitative evaluation of the performance

Products

ATLID/CPR/MSI composite products selected for continuity with respect to A-Train/DARDAR products (see talk by S. Mason):

- ACM-CAP (liquid cloud/ice cloud/rain water content and effective radius, aerosol number concentration and extinction)
- ACM-COM (cloud water/ice content and particle size, aerosol type and optical depth at 355nm) Use of the ACM-3D products (3D scene construction) is to be assessed.

Expected improvements with respect to A-Train we plan to exploit

- Fully synchronized observations form ATLID/CPR/MSI (lidar/radar/imager on the same platform)
- Higher accuracy of retrieved cloud/aerosol extinction profiles
- Better radar sensitivity to thin ice clouds and lower liquid cloud layers at higher spatial resolution
- Liquid cloud retrieval (although with higher uncertainty than ice clouds)
- Better discrimination and characterization of overlapping aerosol/cloud layers with HSRL ATLID. Aerosol/Cloud overlap is of particular interest for future EUMETSAT products.
- Improved synergic target classification

www.eumetsat.int

Contraction Remarks

Use of EarthCARE data in other EUMETSAT developments and activities:

- Assessment of the assumptions on aerosol vertical distribution (look-up tables) and layers in retrievals from instruments with no vertical capabilities (e.g., current Metop/PMAP product)
- Use of the Broadband Radiometer (BBR) for the validation of Outgoing Longwave Radiation (OLR) products
- Radiometric calibration of imagers (e.g., in plan for EPS-SG/METimage if temporal overlap allows)
- Comparison of atmospheric correction estimation from passive imagers (e.g., MAP and CLIM) and profile measurement from EarthCARE

All EUMETSAT products discussed here are available through the **EUMETSAT Product Navigator and Data Centre Download Tool**: <u>https://navigator.eumetsat.int</u>

Product monitoring and validation results available to users via **METIS** (Monitoring & Evaluation of Thematic Information from Space): <u>https://metis.eumetsat.int</u>

For **more information** about the EUMETSAT products discussed in this presentation, please contact: <u>Clouds</u>: Alessio.Bozzo@eumetsat.int, Loredana.Spezzi@eumetsat.int <u>Aerosols</u>: Julien.Chimot@eumetsat.int, Bertrand.Fougnie@Eumetsat.int, Pepe.Phillips@eumetsat.int, Margarita.Vazquez@eumetsat.int