

A Physics-Informed Data-Driven Approach for Fast Atmospheric Radiative Transfer Inversion Using FORUM Simulated Measurements

Sgattoni C.¹, Chung M.², Sgheri L.³

ESA UNCLASSIFIED – For ESA Official Use Only 1 *3 Institute of Applied Mathematics (IAC), National Research Council (CNR), Florence, Italy1 Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy ² Department of Mathematics, Emory University, Atlanta, GA, USA*

Background – Retrieval, inverse problem

Find the atmospheric parameters x (surface temperature, temperature, water vapor, ozone, surface spectral emissivity) that best reconstruct the measured spectrum y .

VERY ILL-CONDITIONED PROBLEM

□ Formulated as a Bayesian inference problem and solved using the OPTIMAL ESTIMATION METHOD²:

$$
x = \arg\min_{x} \frac{1}{2} \| L_y(y - F(x)) \|_2^2 + \frac{1}{2} \| L_a(x - x_a) \|_2^2,
$$

where $S_y^{-1} = L_y^T L_y$ and $S_a^{-1} = L_a^T L_a$ are the inverses of the variance-covariance matrices (VCM) of the measurements y and the a-priori information x_a , respectively.

❑ Minimization carried out using Gauss Newton + Levenberg-Marquardt technique.

❑ ²Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, https://doi.org/10.1142/3171, 2000.

Objectives: the RETRIEVAL problem

The computational cost of a full-physics method is too large to get Near Real Time (NRT) data analysis

use of data-driven techniques to speed up the inversion.

Development of innovative and fast mathematical techniques to:

- exploit the huge amount of data that will be available;
- ❑ provide a flexible method, easy to apply given a database of measurements and some a-priori information.

New method: scheme

1) Approximation of the RT inverse operator with a linear operator trained using a database of FORUM simulated measurements (**completely data-driven phase**);

New method: scheme

- 1) Approximation of the RT inverse operator with a linear operator trained using a database of FORUM simulated measurements (**completely data-driven phase**);
- 2) Incorporation of a-priori information into data-driven solution (**regularization technique**);

→ THE EUROPEAN SPACE AGENCY

New method: scheme

- 1) Approximation of the RT inverse operator with a linear operator trained using a database of FORUM simulated measurements (**completely data-driven phase**);
- 2) Incorporation of a-priori information into data-driven solution (**regularization technique**);
- 3) Estimation of the optimal regularization parameters using a neural network trained with a database of pre-computed optimal parameters (**second training phase**).

THE EUROPEAN SPACE AGENCY

New method: scheme

- 1) Approximation of the RT inverse operator with a linear operator trained using a database of FORUM simulated measurements (**completely data-driven phase**);
- 2) Incorporation of a-priori information into data-driven solution (**regularization technique**);
- 3) Estimation of the optimal regularization parameters using a neural network trained with a database of pre-computed optimal parameters (**second training phase**).

1. Data-driven model

❑ Approximation of the RT inversion with a linear operator Z trained with simulated FORUM measurements

- ❑ Training set 1 (January and July 2021, 12:00, **clear sky**) 3
	- $\triangleright \ X = [x_1, x_2, ..., x_N] \rightarrow \mathbb{N}$ atmospheric scenarios
	- $Y = [y_1, y_2, ..., y_N] \rightarrow N$ simulated FORUM spectra.

8 ³H. Hersbach et al. "The ERA5 global reanalysis". In: Quarterly Journal of the Royal Meteorological Society 146.730 (2020), pages 1999–2049. doi:<https://doi.org/10.1002/qj.3803>

+ THE EUROPEAN SPACE AGENCY

❑ Method

$$
\min_{Z} f(Z) = \min_{Z} ||X - ZY||_{F}^{2}
$$

$$
\frac{\delta f}{\delta Z} = -2L_{y}^{T}L_{y}XY^{T} + 2L_{y}^{T}L_{y}ZYY^{T}
$$
A minimizer \hat{Z} of f solves $\hat{Z}YY^{T} = XY^{T}$.

We can express:

 $\hat{Z} = XY^{+}$. Then, $\hat{x} = \hat{Z}y$.

*** Moore-Penrose pseudoinverse**

Let M be a matrix of rank k with singular value decomposition $M = U\Sigma V^T$, the Moore-Penrose pseudoinverse of M is given by

$$
M^{+} = V \tilde{\Sigma} U^{T},
$$

$$
\tilde{\Sigma} = diag\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, ..., \frac{1}{\sigma_{k}}, 0, ..., 0\right).
$$

→ THE EUROPEAN SPACE AGENCY

Mean signed (blue) and unsigned (orange) errors for the global test set 1

+ THE EUROPEAN SPACE AGENCY

IV

÷.

2. Tikhonov regularization – Bilevel Optimization problem A. Inner problem

❑ Additional priori information:

$$
\mathsf{x}(\lambda) = \arg\min_{x} \frac{1}{2} \| L_x(x - \hat{Z}y) \|_2^2 + \frac{1}{2} \| (diag(\lambda)L_a(x - x_a) \|_2^2, \text{ with }
$$

- $S_{\mathcal{X}}^{-1} = L_{\mathcal{X}}^{T} L_{\mathcal{X}}$ inverse of the experimental VCM,
- x_a generated from the matrix S_a^4 , with $S_a^{-1} = L_a^T L_a$.

⁴defined by the UK MetOffice for assimilation of IASI products into the operational Numerical Weather Prediction (NWP) system.

B. Outer problem

12

❑ Computation of the optimal regularization parameters for test set 1 (now training set 2):

$$
\lambda^{opt} = \arg\min_{\lambda} \frac{\|x(\lambda) - x_{true}\|_2}{\|x_{true}\|_2}
$$

.

- ❑ Optimization carried out using interior points method.
- 5 minimizations of the inner problem changing the outer problem, one for each atmospheric component \rightarrow one 5x1 parameter vector for each minimization \rightarrow stored in a 5x5 matrix denoted by M.
- \Box Strong coupling between the 5 components → aggregation of all the information in M and extraction of the most correlated parameters vector λ^{opt} with the first two left singular vectors:

$$
M = USV^T, \ \lambda^{opt} = \frac{1}{4}U_1\sigma_1 + U_2\sigma_2.
$$

3. Regularization parameter estimation

- \Box Assume there exists a well-defined mapping $\Phi(\hat{x}, x_a) = \lambda$.
- Set a NEURAL NETWORK parametrized by θ to approximate Φ .

unique network for all 5 components

□ Given training data $(\hat{x}_j, (x_a)_j, \lambda_j^{opt})$ $j=1$ J the following equation is solved:

$$
\tilde{\theta} = \arg \min_{\theta} \frac{1}{J} \sum_{j=1}^{J} \left\| \Phi\left(\widehat{x_j}, (x_a)_j, \lambda_j^{opt}, \theta\right) \right\|.
$$

Neural Network INPUT: $\hat{x} - x_a$ Neural Network OUTPUT (prediction): $\log(\lambda^{nn})$ Neural Network ARCHITECTURE: 3 layers (dim: 15,10,5).

→ THE EUROPEAN SPACE AGENCY

Neural Network performance for training set 2

52

 $rac{N}{N}$

H

 \pm

H

些

 \equiv 100 \equiv

H

→ THE EUROPEAN SPACE AGENCY

 $\|\mathbf{v}\|$

Comparison for a single case in the training set 2

 $rac{N}{N}$

RE.

 $\left\langle \Phi_{\pm}\right\rangle$

H

→ THE EUROPEAN SPACE AGENCY

IV

Results – Aggregated cases

Mean signed (normal) and unsigned (bold) errors for a global test set 2 vs Apriori errors (dotted)

 x_2

+ THE EUROPEAN SPACE AGENCY

Results - CASE 5 in test set 2

 x_{λ}

H

些

 \equiv

 $rac{N}{N}$

<u>ee</u>

 \pm

+ THE EUROPEAN SPACE AGENCY

 $\left\| \boldsymbol{\ast} \right\|$

Future directions

- ❑ Comparison with full-physics methods.
- ❑ Extension to all-sky conditions.
- Adaptation for use with different instruments.
- ❑ Application of a similar data-driven approach with additional a-priori information to the direct problem.
- Incorporating this work into the analysis of fast radiative transfer models for data assimilation techniques into climate and meteorological models as part of the PNRR-EMM project.

Thanks to INdAM-GNCS, Math Research Group, for financial support

→ THE EUROPEAN SPACE AGENCY

Introduction – FORUM mission

- □ FORUM¹ (Far-infrared Outgoing Radiation Understanding and Monitoring) is a Fourier Transform Spectrometer (FTS) selected as the ninth Earth Explorer mission by the European Space Agency in 2019.
- \Box It will provide interferometric measurements in the Far-InfraRed (FIR) spectrum (100-1600 cm⁻¹ region), constituting 50% of Earth's outgoing longwave flux.
- ❑ Accurate Top Of the Atmosphere (TOA) measurements in the FIR are crucial for improving climate models.

¹L. Sgheri et al. "The FORUM end-to-end simulator project: architecture and results". In: Atmospheric Measurement Techniques 15.3 (2022), pages 573–604. doi: 10.5194/amt-15-573-2022. url:<https://amt.copernicus.org/articles/15/573/2022/>

Background

→ THE EUROPEAN SPACE AGENCY ┡╋═ 2EI $\left\langle \Phi_{\pm}\right\rangle$ $\|\mathbf{v}\|$ Ж

Background – Radiative Transfer (RT), forward model

$$
\int \frac{dI_{\nu}}{dz}(z) = -\alpha_{\nu}(p, T, c)I_{\nu}(z) + \alpha_{\nu}(p, T, c)B_{\nu}(T)
$$

 $I_v(z_0) = I_{v_0},$

for each atmospheric layer, with, ν wavenumber, ν altitude, I intensity of radiation,

B Planck function, α attenuation coefficient, p pressure, T temperature, c gases concentration.

$$
I(z_N) = \left[\epsilon B(T_E) + (1 - \epsilon) \left(\sum_{i=1}^N B(T_i) (1 - e^{-\tau_i}) e^{-\sum_{j=1}^{i-1} \tau_j} \right) \right] e^{-\sum_{i=1}^N \tau_i} + \sum_{i=1}^N B(T_i) (1 - e^{-\tau_i}) e^{-\sum_{j=i+1}^N \tau_j},
$$

with τ optical depth and T_E Earth surface temperature.

 $\frac{N}{N}$

 \blacktriangleright

æ

 $+$

 $=$ $+$

œ

 $\overline{}$

 \bullet

TI

三星期

≤ **= II**

82

The Second Second

ш

<u>e a</u>

+ THE EUROPEAN SPACE AGENCY

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

=

F.