Summary

IRM data over 8 years reveal important features in magnetosphere-ionosphere-thermosphere (MIT) coupling in topside ionosphere (2013/10 – 2021/12) at 325-1500 km: e.g.

- Effects of atmospheric photoelectrons on spacecraft charging
- Molecular and nitrogen (N\textsubscript{2}) ion enhancements in active auroral ionosphere
- Decameter-scale structures at both high and low latitudes (i.e., aurora, equatorial plasma bubbles)

IRM Ion Time of Flight (TOF) Measurements

Swarm-E imaging and rapid-scanning ion mass spectrometer (IRM):

- Combines ion time-of-flight (TOF), hemispherical electrostatic analysis, and 2D positional imaging
- Resolves ion mass-per-charge (M/q), energy-per-charge (E/q), and incident direction
- Simultaneously measures incident plasma current at high (1-mA) cadence

Spacecraft Potential and Ion Composition Analysis

Spacecraft Potential

- Significant effects of escaping atmospheric electrons in sunlit ionosphere above source altitude of atmospheric photoelectrons
- Other sources (than ambient electrons) of significant negative (and positive) spacecraft potentials
- Small, non-negligible percentage of cases of highly negative potentials at low and high latitude

Method:

- Fit TOA distributions of measured ions in spacecraft ram at peak and adjacent peaks and V\textsubscript{m} (or other species where available).
- Infer spacecraft potential V\textsubscript{sc} from measured ion velocity inside sheath v(m) and corresponding velocity outside sheath v(m) (multi-species analysis)
- or spacecraft ram velocity v\textsubscript{m} (single-species analysis)

\[V_{SC} = \frac{m}{2q} \left(v(m)^2 - v(m) \right) \]

Small-scale plasma density irregularities

- Measured plasma current on sensor surface \(I_e \) (typically) due to ambient electrons and ions, photoelectrons, and (primarily) auroral electrons and proportional to plasma density \(n_e \)
- \(I_e \) used as proxy for \(n_e \) \& \(n_{\text{enh}} \) used to study density irregularities \(n_{\text{enh}} \) down to 10-m scale

- Statistically significant differences in morphological characteristics between:
 - current enhancement and current depletion structures,
 - positive and negative current structures,
 - large-scale and small-scale current structures

- Scale-dependent spectral index, with significant power down to 10's of meters: detailed analysis in progress

Spacecraft Potential

- Challenge of measuring \(N^+ \)
- Unique capability of IRM to separate \(N^+ \) from \(O^+ \) (and dependence of capability on S/C potential)
- Occurrence of molecular ions (MI) altitude distribution & interpretation
- Occurrence of \(N^+ \) enhancement: association with MI & interpretation
- Occurrence frequency of MI in topside ionosphere vs. abode: interpretation & MIC implications

Molecular and nitrogen (N\textsubscript{2}) ions

- Challenge of measuring \(N^+ \)
- Unique capability of IRM to separate \(N^+ \) from \(O^+ \) (and dependence of capability on S/C potential)
- Occurrence of molecular ions (MI) altitude distribution & interpretation
- Occurrence of \(N^+ \) enhancement: association with MI & interpretation
- Occurrence frequency of MI in topside ionosphere vs. abode: interpretation & MIC implications

Conclusions

- Swarm-ECASSIOPE (e-POP) IRM:
 - 8 years of ion time-of-flight (TOF) & plasma current data spanning SC 24 & 25 (2014-2021)
 - Unique measurements for study of (underexplored) ion composition & small-scale irregularities

Acknowledgments

We acknowledge the support of the Canadian Space Agency for the development and early operation of CASSIOPE/e-POP and of the European Space Agency for mission and science operations as a Fourth Element of Swarm under the Third-Party Mission Programme.