Antarctic Sea Ice: snow and ice thickness change and variability from ICESat-2

Ted Maksym

Change in Ice Covered Season 1979-2015 to 2016-2023

Ice Season is substantially shorter almost everywhere

Anomaly persistence increased due to ocean forcing and/or feedback

Is this linked to ice thickness change?

How can we estimate snow depth?

Ice evolution in polynya outlet plume

30

25 E

20

15 J

10

- 1D thermodynamic model (Maksym and Jeffries, 2000)
- "No" Snow accumulation (but use ERA5 just in case)
- ICESat-2 freeboard distribution evolved over time
- No ocean heat included (should be ~nil here)

Tracking ice evolution

- 'Ice Patch' tracked across multiple ICESat-2 tracks
- Growth predicted well
- Snow accumulation is small (~5 cm)
- Ice deformation apparent in peak broadening (new ice and thick ice)

What if there's lots of snow?

Maria Stenzel

May (PIPERS – Ross Sea)

а

Sep (SIPEXII – E. Antarctic)

How much do properties change during growth?

Drilling data from ~80 floes in the Ross Sea

Floe evolution over 30 days with 10 cm accumulation

Change in Freeboard = -1.4 cm Change in Snow Depth = + 8.5 cm Change in Thickness = + 9 cm

Change in Freeboard = -0.1 cm Change inSnow Depth = +7 cm Change in Thickness = +7 cm

Ice freeboard changes are negligible Elevation changes are consistently ~65-70% of accumulation

This ignores deformation!

BUT – we have high-resolution roughness from ICESat-2

Distributions from drilling data in Ross, Amundsen, Bellingshausen Seas

Snow Depth \cong Freeboard (when ice is not too thick and deformed)

Mean floe freeboard and snow depth for ~80 floes in Ross Sea Sector

Ice Freeboards

Winter ice evolution in Ross Sea

Selected ice patch repeatedly sampled by IS2 during drift

Snow Elevation evolution over two separate 5 week periods during drift

ERA5

accumulation

change well

tracks freeboard

- Track 'level' ice by excluding 'rough, thick ice'
- Snow depth and snow ice production compare well with prior observations – variability is modest

Are we detecting ocean heat?

Monitors growth along central Ross drift track

...Maybe?

Ocean heat is determined from lack of expected growth

Is there more ocean heat?

Updated from Purich and Doddridge, 2023

Change in Ice Covered Season 1979-2015 to 2016-2023

Ice season has decreased, has ice thickness, too?

ICESat-2 – ICESat Freeboards

• Major decline in summer freeboards: consistent with ice retreat

• No mean change in freeboard in Autumn/Spring!

- IS2 snow freeboard changes consistent with CS2 ice thickness trends (Ross, Amundsen, and Bellingshausen)
- Some differences in Weddell
- Ice thickness trends are small, so ice freeboard trends are even smaller
- Suggests major snow freeboard changes are due to snow cover changes

Summary and Next Steps

- Lagrangian tracking of freeboard distribution changes can be used to identify role of key processes if we can effectively partition ice types
 - Better discriminate deformed ice with high-resolution product
- Snow depth is easier than ice thickness
 - Level ice freeboard change is mostly snow depth change
 - Deformation is a challenge
 - In situ observations do not compare well with satellite
- Is ice growth/advance being limited by high ocean heat flux?
 - Maybe, but thickness may not have substantially changed
- Summer sea ice has "thinned", BUT likely less snow.
 - Next step is to better constrain snow depth in the thicker, rough ice

Need to go do more In Situ obs!

Maria Stenzel