

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

Combined use of passive and active remote sensing to characterize the vertical stratification of the cloud thermodynamic phase

<u>Takashi M. Nagao ¹ and Kentaroh Suzuki ¹</u> ¹ Atmosphere and Ocean Research Institute, The University of Tokyo, Japan Three techniques for cloud phase determinations independent of the relationship between temperature and ice-phase fraction

- These techniques have different penetration depths into clouds: Lidar & POL are limited to optically shallow layers, whereas SWIR can penetrate deeper into clouds (One sensor is not enough)
- We combine two cloud phase data from CALIPSO lidar & MODIS SWIRs to characterize the vertical stratification of the cloud phase; Mention the possible combination of SGLI SWIR & POL

Data 1: Cloud particle type derived from CALIPSO lidar (CALIOP)

- Utilized the CALIOP cloud particle type product developed by Prof. Okamoto's group (Yoshida) et al., 2010; Hirakata et al., 2014), available from the JAXA A-Train Product Monitor
- This product offers cloud particle types, but they were **binarized into liquid (0) or ice (1)** for our analysis, and the ice phase fraction (0. – 1.) was then calculated based on cloud bins detected

JAXA EarthCARE Research A-Train Product https://www.eorc.jaxa.jp/EARTHCARE/research_product/ecare_monitor.html requency

Data 2: Cloud phase retrieval from SWIR channels

- A SWIR-based cloud phase retrieval algorithm utilizing the 1.6 & 2.1 µm channels was implemented for consistent application to MODIS & SGLI (Nagao & Suzuki, 2021).
- This algorithm retrieves total COT, CER, & ice COT fraction (ICOTF) to total COT, using two SWIRs & one VNIR

COT_{LIQ}[←] → COT_{ICE} ------- (Ice COT Fraction) $ICOTF = \frac{COT_{ICE}}{COT_{LIQ} + COT_{ICE}}$

Nagao & Suzuki, 2021 ESS (https://doi.org/10.1029/2021EA001912)

Comparing the global characteristics of the ice phase/COT fractions

- Difference: The CALIOP-derived ice phase fraction exhibits more values close to either 0 or 1 (dark blue & dark red)
- This study interpret this difference in context of the distinct penetration depths between lidar and SWIR, seeking insight into the vertical stratification of the cloud phase through their combined and complementary use

a) CALIOP-derived ice phase fraction*

b) MODIS SWIR-derived ice COT frac.

* The ice phase fraction was calculated based on all the cloud bins detected by CALIOP, regardless of whether they were single or multi-layer clouds

Combined use of the two cloud phases from CALIOP and MODIS SWIR

• First, the CALIOP-derived ice phase fraction and MODIS SWIR-derived ICOTF were binarized with a threshold value of 0.5 to obtain cloud phase classes for 'liquid (LIQ)' and 'ice (ICE)'. These cloud phase classes were then combined to define the four categories:

- ✓ LIQ/LIQ and ICE/ICE can mainly increase vertically homogeneous liquid and ice clouds
- LIQ/ICE is thought to include liquid-top mixed-phase clouds, while ICE/LIQ would include multi-layer clouds, this conjecture is supported by BTD-based cloud phase identification

Interpretation in terms of droplet vertical distribution using CloudSat/CPR

- The four-categories of cloud phase were associated with the distinct droplet vertical profile
- When the SWIR-based cloud phase exhibits ICE (b, d), a similarity in Ze profiles are found
- This results suggest that the combined use of lidar & SWIR better characterizes vertical stratification of the cloud thermodynamic phase

GCOM-C / SGLI, the successor to ADEOS-II / GLI

GCOM-C

Launch Data	Dec. 24, 2017 (in operation)				
Orbit	Sun-synchronous (Descending local time: 10:30)				
Instrument	Second generation GLobal Imager (SGLI)				
	Wavelength	380 nm – 12 µm, 19 chs.			
	Resolution	250 m - 1 km			
	Swath	> 1000 km			
	Obs. Freq.	2 - 3 day			

	СН	WL [nm]	IFOV [m]	СН	WL [µm]	IFOV [m]		
	VN1 380		SW1	1.05	1000			
VIS/NIR	VN2	412	250†	SW2	1.38		SWIF	
	VN3	443		SW3	1.63	250 [†]		
	VN4	490		SW4	2.21	1000		
	VN5	530		TI1	10.8	250†	TIR	
	VN6	565		TI2	12.0			
	VN7	673.5		 + 250 m resolution over land and coasta area, 1 km over offshore SWIR & POL → two cloud phases 				
	VN8	673.5						
	VN9	763						
	VN10	868.5						
	VN11	868.5		O ₂ A-band & TIR				
POL	P1	673.5	1000	\rightarrow CGT (\rightarrow Nc w/ COT, CER)				
	P2	868.5		\rightarrow CBH \rightarrow downward LW Flux				

SGLI channels

Comparing the SWIR- & POL-based cloud phases (preliminarily)

SGLI-based cloud and radiation product: global

 Retrieved cloud property using the SGLI multi-channels with our implemented algorithm and then estimated the shortwave/longwave (SW/LW) radiative fluxes at TOA/SFC

SGLI-estimated of cloud radiative effect (preliminarily)

 The SGLI-based CRE estimates were consistent with the CRE based on the A-train multi-sensor observations. However, there remains some negative bias in the upward LW due to an underestimation of ~ 1 km in the TIR-based CTH retrieval for ice clouds.

Summary

- The two pieces of cloud phase information obtained from active lidar and passive SWIR, each binarized into liquid or ice, were then combined to define the four categories of cloud phases
- Then investigated through comparisons with CloudSat/CPR radar profile statistics to illustrate how cloud vertical structures vary systematically with the four categories of cloud phase
- The results suggest that the combined use of complementary information from three sensors (lidar, SWIR, and radar) can better characterize the vertical structures of the cloud thermodynamic phase
- While combination between lidar and SWIR are limited along the spacecraft track, the combination of SGLI SWIR and POL is another possible candidate with an alternative to lidar that can provide wider horizontal coverage
- Also introduced the SGLI-derived cloud properties and radiation products that are worth comparing to EarthCARE observations to understand the vertical and horizontal structure of clouds. (we believe)

Example of SGLI-derived cloud property retrievals

Comparing the temperature dependences of the ice-phase fractions

- *Difference*: The lidar-based ice-phase fraction was mostly either 0 or 1 (pure liquid or ice), whereas the SWIR-derived ICOTF continuously varied between 0 and 1 along with BT
- → This study aims to interpret these differences in context of the distinct penetration depths between lidar and SWIR, seeking insight into the vertical stratification of the cloud phase through their combined and complementary use

^{*} The ice phase fraction was calculated based on all CALIOP-detected cloud bins for single layer clouds, and only the first upper cloud for multilayer clouds

Consistency with cloud phase identified by MODIS BT difference

Fig. 7 The joint distributions of brightness temperature (BT) at MODIS 11 μ m band and brightness temperature difference (BTD) between MODIS 8.6 μ m and 11 μ m bands.

The negative BTD suggests liquid water clouds, consistent with the CALIPO-derived cloud phase.

The **positive BTD** suggests **ice-phase** clouds, consistent with the CALIPO-derived cloud phase.

Principle of the retrieval algorithm

Radiance @ TI01 [W/m2/sr/micron]

Validations with ground-based measurements

[†]Target accuracy - CGT of water clouds : 300 m (Scene) - CTH :1 km (Scene)

Bias: 50 m

5

Validation with ground-based measurements

[†]Target accuracy

- Downward SFC LW: 10 W/m² (0.1 deg., monthly)

- Downward SRC SW : 13 W/m² (0.1 deg., monthly)

Comparison of satellite-based cloud phase

< Fractions of Ice-Containing Clouds >

- ✓ Difference in ice cloud fraction change with respect to CTT
 - \rightarrow Need to investigate if the difference is due to algorithms or sensors
- ✓ MOD06 is likely to misidentify ice clouds as liquid water clouds.

The CERs in b) c) and d) are obtained from MOD06. The absence of CER > 30 μm is probably is due to the maximum value of the liquid cloud CER of 30 μm in MOD06.

タイトル