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Three techniques for cloud phase determinations independent of
the relationship between temperature and ice-phase fraction

Active Lidar Passive SWIR Meas. Passive Polarimetry
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GCOM-C/SGLI €

® These techniques have different penetration depths into clouds: Lidar & POL are limited to
optically shallow layers, whereas SWIR can penetrate deeper into clouds (One sensor is not enough)

® \We combine two cloud phase data from CALIPSO lidar & MODIS SWIRs to characterize the
vertical stratification of the cloud phase; Mention the possible combination of SGLI SWIR & POL



Data 1: Cloud particle type derived from CALIPSO lidar (CALIOP)

® Utilized the CALIOP cloud particle type product developed by Prof. Okamoto's group (Yoshida
et al., 2010; Hirakata et al., 2014), available from the JAXA A-Train Product Monitor

® This product offers cloud particle types, but they were binarized into liquid (0) or ice (1) for our
analysis, and the ice phase fraction (0. — 1.) was then calculated based on cloud bins detected
L—9BRAUE
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JAXA EarthCARE Research A-Train Product
https://www.eorc.jaxa.Jp/EARTHCARE/research_product/ecare_monitor.html



Data 2: Cloud phase retrieval from SWIR channels

COT, o~ COT\e
® A SWIR-based cloud phase retrieval algorithm utilizing the 1.6 & ~____"1
2.1 um channels was implemented for consistent application to CER_ o = CER¢

MODIS & SGLI (Nagao & Suzuki, 2021).

® This algorithm retrieves total COT, CER, & ice COT fraction
(ICOTF) to total COT, using two SWIRs & one VNIR
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Comparing the global characteristics of the ice phase/COT fractions

® Difference: The CALIOP-derived ice phase fraction exhibits more values close to either O or 1
(dark blue & dark red)

® This study interpret this difference in context of the distinct penetration depths between lidar and
SWIR, seeking insight into the vertical stratification of the cloud phase through their combined
and complementary use

a) CALIOP-derived ice phase fraction*

b) MODIS SWIR-derived ice COT frac.
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* The ice phase fraction was calculated based on all the cloud bins detected by CALIOP, regardless of whether they were single or multi-layer

clouds



Combined use of the two cloud phases from CALIOP and MODIS SWIR

® First, the CALIOP-derived ice phase fraction and MODIS SWIR-derived ICOTF were binarized
with a threshold value of 0.5 to obtain cloud phase classes for ‘liquid (LIQ)’ and ‘ice (ICE)’. These
cloud phase classes were then combined to define the four categories:

CALIOP (upper cloud layer) & MODIS
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v LIQ/LIQ and ICE/ICE can mainly increase vertically homogeneous liquid and ice clouds

Is thought to include liquid-top mixed-phase clouds, while ICE/LIQ would include multi-layer
clouds, this conjecture is supported by BTD-based cloud phase identification



Interpretation in terms of droplet vertical distribution using CloudSat/CPR

CALIOP | LIQ , j | ICE ICE
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® The four-categories of cloud phase were associated with the distinct droplet vertical profile
® \When the SWIR-based cloud phase exhibits ICE (b, d), a similarity in Ze profiles are found

® This results suggest that the combined use of lidar & SWIR better characterizes vertical 5
stratification of the cloud thermodynamic phase



GCOM-C / SGLI, the successor to ADEOS-II / GLI

GCOM-C

VIS/NIR

Launch Data Dec. 24, 2017 (in operation)

Orbit Sun-synchronous _
(Descending local time: 10:30)

Instrument Second generation GLobal Imager (SGLI)

Wavelength 380 nm — 12 um, 19 chs.

Resolution 250 m -1 km PoL

Swath > 1000 km

Obs. Freq. 2 - 3 day

SGLI channels

SW1 1.05
1000
SW?2 1.38
SWIR
SW3 1.63 250t
SW4 2.21 1000
TI1 10.8
oot | TIR
TI2 12.0

VN1 380
VN2 412
VN3 443
VN4 490
VN5 530
VNG 565 2507
VN7 673.5
VN8 673.5
VN9 763
VN10 | 868.5
VN11 | 868.5
P1 673.5
1000
P2 868.5

t 250 m resolution over land and coastal
area, 1 km over offshore

SWIR & POL
— two cloud phases

O, A-band & TIR
— CGT (— Nc w/ COT, CER)
— CBH — downward LW Flux



Comparing the SWIR- & POL-based cloud phases (preliminarily)
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SGLI-based cloud and radiation product: global

(Jan. - Nov. 2021)

Cloud properties

Cloud phase (ICOTF)

|
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® Retrieved cloud property using the SGLI multi-channels with our implemented algorithm and then
estimated the shortwave/longwave (SW/LW) radiative fluxes at TOA/SFC



SGLI-estimated of cloud radiative effect (preliminarily)

SGLI
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® The SGLI-based CRE estimates were consistent with the CRE based on the A-train multi-sensor
observations. However, there remains some negative bias in the upward LW due to an
underestimation of ~ 1 km in the TIR-based CTH retrieval for ice clouds.

*if the ~ 1 km CTH bias is corrected
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Summary

® The two pieces of cloud phase information obtained from active lidar and passive SWIR,
each binarized into liquid or ice, were then combined to define the four categories of
cloud phases

® Then investigated through comparisons with CloudSat/CPR radar profile statistics to
illustrate how cloud vertical structures vary systematically with the four categories of
cloud phase

® The results suggest that the combined use of complementary information from three
sensors (lidar, SWIR, and radar) can better characterize the vertical structures of the
cloud thermodynamic phase

® \While combination between lidar and SWIR are limited along the spacecraft track, the
combination of SGLI SWIR and POL is another possible candidate with an alternative to
lidar that can provide wider horizontal coverage

» Also introduced the SGLI-derived cloud properties and radiation products that are worth comparing to

EarthCARE observations to understand the vertical and horizontal structure of clouds. (we believe) H






Example of SGLI-derived cloud property retrievals
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Comparing the temperature dependences of the ice-phase fractions

® Difference: The lidar-based ice-phase fraction was mostly either O or 1 (pure liquid or ice),
whereas the SWIR-derived ICOTF continuously varied between 0 and 1 along with BT

— This study aims to interpret these differences in context of the distinct penetration depths
between lidar and SWIR, seeking insight into the vertical stratification of the cloud phase through

their combined and complementary use

a) CALIOP

b) MODIS SWIR-derived
(upper cloud layer?*)
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* The ice phase fraction was calculated based on all CALIOP-detected cloud bins for single layer clouds, and only the first upper cloud for multi-

layer clouds
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Consistency with cloud phase identified by MODIS BT difference

Fig. 7 The joint distributions of brightness temperature (BT) at MODIS 11 um band
and brightness temperature difference (BTD) between MODIS 8.6 um and 11 pm bands.

cALIOP

MODIS Liquid
5 a) 5 b) 5 d)
- Based on
4 4 4
¥ 3 ¥ 3 ~ ¥ 3 BTD
£ 2 € 2 £ £ Ice
7 2 o1 - 1 1
© © © ©
<. e o e B 0 o B O U SR ! IR
fe) o o [a)]
b 1 b b - b l
-2 - : ..
B 3t B B LB i p e qul“d
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BT (11um)) [K] BT (11um)) [K] BT (11um)) [K] BT (11um)) [K]
0.0 02 04 06 07 0.9 00 01 02 03 03 04 0.0 02 04 05 0.7 09 0.0 02 04 06 08 1.0
Relative Frequency: RF(C|X,Y) Relative Frequency: RF(C|X,Y) Relative Frequency: RF(C|X,Y) Relative Frequency: RF(C|X,Y)
The negative BTD suggests liquid water clouds, The positive BTD suggests ice-phase clouds,
consistent with the CALIPO-derived cloud phase. consistent with the CALIPO-derived cloud phase.
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SW4 (2.21um) Reflectance

Principle of the retrieval algorithm
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Based on the combination three retrieval techniques:

(1) COT & CER from VNR & SWIR

(2) CER & Cloud phase (Ice COT fraction) from SWIRs

(3) CTH & CGT from TIR & O, A-band

Assumes a plane-parallel layer with mixed LIQ & ICE
Retrieves 5 variables with at least 5 channels of SGLI
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Validations with ground-based measurements

Cloud Base Height Cloud Base Height
vs. EUMETNET E-PROFILE (Ceilometer) vs. Ship-borne Ceilometer
period: 2021/09/01 - 2022/12/31 period: 2018/03/02 - 2020/04/05
range : As < 4 [km]; At < 30 [min.] | range : As < 5 [km]; At < 20 [min.]

12 : ; 6 >

. 1) LCL : bias = -0.28; RMSE = 1.22 : 1) LCL : bias = -0.23; RMSE = 0.72 /

e 2)SGLI: bias = -0.07; RMSE = 0.77; r = 0.80; N = 629 e 2) SGLI: bias = 0.05; RMSE = 0.48; r = 0.75; N = 42 #
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TTarget accuracy
- CGT of water clouds : 300 m (Scene)
- CTH :1km (Scene)



SGLI SW flux surf down [W/m2]

Validation with ground-based measurements

Downward SW flux (all-sky)
vs. BSRN

period: 2021/01/01 - 2021/12/31
ST range: As < 3 km; At < 30 min.

4 stat: r = 0.94; bias = -4.08; RMSE = 98.97;
J fit :y =0.98 x +5.60

sgpe Bias: -4 W/m?

.- RMSE: 99 W/m2
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Downward LW flux (all-sky
vs. BSRN

period: 2021/01/01 - 2021/12/31
ST range: As < 3 km; At < 30 min.

4 stat: r = 0.95; bias = 8.00; RMSE = 21.94;
4 fit :y =1.01 x +4.00

Bias: +8 W/m?2
RMSE: 22 W/m?

BSRN LW flux surf down [W/m2]
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- Downward SFC LW : 10 W/m2 (0.1 deg., monthly)
- Downward SRC SW : 13 W/m2 (0.1 deg., monthly)
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Comparison of satellite-based cloud phase

< Fractions of Ice-Containing Clouds >

a) Our Product b) CALIPSO c) MODIS Standard Product
(using SWIRS) (JAXA A-train Product) (MODO06)

220

280

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
CER [micor m] CER [micro m] CER [micro m]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fraction of ice-containing clouds Fraction of ice-containing clouds Fraction of ice-containing clouds

v" Difference in ice cloud fraction change with respectto CTT
— Need to investigate if the difference is due to algorithms or sensors

v' MODO06 is likely to misidentify ice clouds as liquid water clouds.

« The CERsin b) ¢) and d) are obtained from MODO06. The absence of CER > 30 um is probably is due to the maximum value of the liquid cloud
CER of 30 pm in MODO6.
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