Lessons for EarthCARE from the assimilation of cloud-affected Aeolus backscatter

Mark Fielding Marta Janisková, Karen Henry, Will McLean, Angela Benedetti

Pre-launch EarthCARE science and validation workshop, ESA-ESRIN

November 15th 2023

ATLID and ALADIN are on the same side!

- Previously, all cloud lidar assimilation experiments at ECMWF have used CALIPSO observations as a proxy for EarthCARE data.
- Aeolus ALADIN lidar is technically much closer related to EarthCARE's ATLID than the CALIPSO lidar, despite its primary goal of measuring line-of-sight winds.
- Several activities investigating the benefit of Aeolus aerosol backscatter (e.g., AEOLUS DISC), but, so far, cloud has mainly been seen as noise that must be removed.
- > Can Aeolus observations be used to prepare for ATLID assimilation?
- How useful is Aeolus cloud backscatter for NWP?
- > Can Rayleigh backscatter be assimilated?

Vertical resolution and pointing angle are the major differences between ATLID and ALADIN

Characteristic	EarthCARE ATLID	Aeolus ALADIN
Specification	3° off-Nadir	37.5° off-Nadir
	355 nm	355 nm
	0.62 m diameter telescope	1.50 m diameter telescope
	35 µrad receiver field of view	19 µrad receiver field of view
Altitude	400 km	400 km
Resolution	103 m vertical	500 m - 1000 m vertical
	0.285 km horizontal	~5 km horizontal
	0.03 km footprint	0.009 km footprint
Misc.	High-spectral-resolution receiver with Rayleigh and Mie co-polar and total cross-polar channels	High-spectral-resolution receiver with Rayleigh and Mie copolar channels only

...requires some adaptations to observation operator

Observation-side

Adapting the observation operator for ALADIN

Modifications for ALADIN

Determining the depolarization ratio

- Unlike spherical particles, such as water droplets, ice particles are generally strongly depolarizing.
- Depolorization ratio can be measured empirically or computed numerically from assumed ice particle shapes.

Observed using CALIPSO (532 nm)

Theoretical (355 nm)

Courtesy NASA (CALIPSO user guide)

Hu, 2007

Choosing test period --- ECMWF monitoring of Aeolus HLOS winds

Mid-mission: lower errors, relatively high laser energy

Rennie and Isaksen, 2023

12-hourly monitoring of Aeolus L2A Mie attenuated backscatter

Aeolus orbit– 1st June 2020 Mie attenuated backscatter

Climatology of observed and simulated cloud fraction – June 2020

Comparison of Aeolus and CALIPSO observed cloud amount

4D-Var experiment setup

 CY48R1 4D-Var experimentation using a horizontal resolution of TCo639 spectral truncation (corresponding to ~ 18 km on a cubic octahedral grid) and 137 levels:

○ 3-month period: 1 June 2020 – 31 August 2020

- Measurements of L2A Mie and Rayleigh attenuated backscatter (at 355 nm, ALADIN) superobbed to (O160-> ~72 km) and 1 km vertical heights.
- Performed experiments:
 - Control reference run, run with all regularly assimilated observations except Aeolus winds
 - +winds operational configuration including Aeolus HLOS winds see Rennie et al., 2021
 - +clouds experimental run including attenuated Mie and Rayleigh attenuated backscatter lidar observations on top of other regularly assimilated observations
 - +winds+clouds experimental runs including attenuated Mie and Rayleigh attenuated backscatter lidar observations and HLOS winds

Assimilating Aeolus cloud obs. broadly neutral on forecasts of large-scale variables

3-month period: 1 June 2020 – 31 August 2020

Assimilating Aeolus cloud Mie and Rayleigh backscatter has slight positive benefit on microwave all-sky obs!

Summary

- Aeolus cloud backscatter observations have been assimilated into a global model for the first time!
- Initial results show impact is broadly neutral, but slight additional positive benefit when simultaneously assimilating winds and cloud information.
- Cloud observations from Aeolus could be useful for model evaluation Aeolus sees clouds at different point in diurnal cycle. PSCs are clearly visible!
- More careful cloud/aerosol screening required for comparison with CALIPSO
 - Can Aeolus observations be used to prepare for ATLID assimilation?
 - How useful is Aeolus cloud backscatter for NWP? YES
 - Can Rayleigh backscatter be assimilated?
 YES (but more analysis required)

