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Abstract

Sometimes, satellites designed for specific objectives, therefore equipped with appropriate payloads, extend their field of application to scientific areas very distant from the original ones. This 

is the case of the Low Earth Orbiting ESA Swarm mission: initially designed with its original configuration (three identical satellites equipped with magnetometers, Langmuir probes, high-

energy particle detectors, GPS, etc.) to monitor and study the geomagnetic field and the state of the ionosphere and magnetosphere, the same data could be analysed to investigate pre-

earthquake (EQ) ionospheric anomalies. For the first time, in 2017, a study (De Santis et al., 2017) showed some pre- and post-EQ magnetic field anomalies detected by the Swarm 

satellites on occasion of the 2015 Nepal M7.8 earthquake. Interestingly, the cumulative number of satellite anomalies and the cumulative number of EQs behaved similarly with the 

so-called S-shape, providing an empirical proof on the lithospheric origin of the satellite anomalies and supporting a lithosphere-atmosphere-ionosphere coupling (LAIC; Pulinets Ouzonov 

2011). Following the same approach, other promising results were obtained for 12 case studies in the range of 6.1-8.3 EQ magnitude, in the framework of the SAFE (SwArm For 

Earthquake study) project funded by ESA (De Santis et al., 2019a). In 2019, almost five years of Swarm magnetic field and electron density data were analysed with a Superposed Epoch 

and Space approach and correlated with major worldwide M5.5+ earthquakes (De Santis et al., 2019b). The analysis verified a significant correlation between satellite anomalies and 

earthquakes above any reasonable doubt, after a statistical comparison with random simulations of anomalies. The work also confirmed the empirical Rikitake law (1987), initially 

proposed for ground data: the larger the magnitude of the impending earthquake, the longer the precursor time of anomaly occurrence in the ionosphere from satellite. A more 

recent investigation (Marchetti et al., 2022) over a longer time series of Swarm data, i.e. 8 years, confirmed the same results. Furthermore, we demonstrated through several case studies (e.g. 

De Santis et al., 2020; De Santis et al., 2022; Akhoondzadeh et al., 2022) that the integration with other kinds of measurements from ground, atmosphere and space (e.g. CSES data) 

reveals a chain of processes before mainshocks of many seismic sequences. We finally propose a two-way model including a diffusion process in the lithosphere with almost direct (likely 

electromagnetic) coupling with the above atmosphere and ionosphere and another with a delayed LAIC to explain most of the found anomalies preceding large earthquakes.

5. Conclusions

1.  A multiparameter-multilayer approach is important to detect the preparatory phase 

of a strong earthquake, in which satellite data analyses are fundamental.

2. Earthquake case studies show peculiar patterns in the lithospheric, atmospheric 

and ionospheric anomalies, accelerating toward the moment of the mainshock.

3.  Worldwide statistical analyses on 8 years of Swarm electron density and magnetic 

field show significant correlations with earthquakes.

4. A two-way model is proposed that takes into account of the overall progression of 

anomalies from different geolayers.
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An automatic algorithm (MASS*) calculates the

first differences of the magnetic field signal

then removes a cubic spline and finally detects

anomalies when rms of a small window

overcomes by 2.5 RMS of the whole track.

Cumulative number of anomalous tracks 

mimics the same of foreshocks.

World Statistical Correlation 

(WSC)  on 8 years of Swarm 

data by Superposed Epoch 

and Space Approach (De 

Santis et al. 2019b; 

Marchetti et al. 2022)

Largest concentrations of 

anomalies are close to 

epicentres and occur 10-30 

and 80 days before EQs

d= real max / random max 

n= real st. deviation vs. 
random st. deviation 

Significant results if 
d≥1.5 & n ≥ 4

Swarm magnetic field anomalies with M5.5+ (2200) EQs
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OVERALL BEHAVIOR OF ANOMALIES

An anomaly was detected 11 days before the EQ

Duration and amplitude of the anomalies in the largest concentrations depend on the EQ magnitude
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GEC= Glocabl Electric Circuit
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