

Wetland emission and atmospheric distribution of methane: Results and lessons learned from the MAGIC2021 international campaign in Scandinavia

Cyril Crevoisier¹, Caroline Bès², Jérôme Pernin¹, Axel Guedj¹, Thomas Ponthieu¹, Félix Langot¹, Lilian Joly³, Bruno Grouiez³, Delphine Combaz³, Nicolas Dumélié³, Thomas Lauvaux³, Pascal Jeseck⁴, Yao Te⁴, Michel Ramonet⁵, Julien Moyé⁵, Morgan Lopez⁵, Antoine Bercher⁵, Herve[´] Herbin⁶, Valéry Catoire⁷, Nicolas Cezard⁸, Julien Lahyani⁸, Andreas Fix⁹, Mathieu Quatrevalet⁹, Anke Roiger⁹, Klaus-Dirk Gottschaldt⁹, Alina Fieh9⁰, Franck Hase¹⁰, Rigel Kivi¹¹, Martin Wooster¹², Mark Grovenor¹², Stéphane Louvel², Frédéric Thoumieux², Aurélien Bourdon¹³

💳 📕 🛨 💳 💶 🚛 🚛 🚛 🚛 📕 🚛 📲 📥 👘 🔽 🔤 ன 👘 🖉

The MAGIC2021 campaign

- Scientific objectives:
 - CH_4 and CO_2 emissions at high-latitude (~68°N)
 - High northern latitudes are a major yet poorly known contributor to the global methane budget.
 - Natural and anthropogenic emissions.
 - Validation of space missions in this difficult environment.
 - Passive space missions (TROPOMI/S5P, IASI): difficulties due to specific obs conditions (high solar zenith angle, surface and thermodynamics conditions) and lack of validation.
 - Active space missions (Merlin): an opportunity to bring new high-quality measurements.
- Date and location:
 - 14-27 August 2021
 - Lapland (bases of operation: Esrange SSC station and Kiruna airport)
- **Team:** 70 participants, 17 teams, 7 countries

• **Funding**: CNES, CNRS, DLR, EUMETSAT, ESA MAGIC4AMPAC

Wetland CH₄ emissions

O' Connor et al., 2010

Anthropogenic CH₄ emissions

The MAGIC2021 campaign

🗕 💶 📕 😓 🚍 🔚 📕 🏣 🔜 🚺 📕 🚍 😓 🔤 🔤 🚱 🔽 🚺 💥 🛨 🔜 🐷 🐸 🐓 🔹 The Europea

The MAGIC2021 campaign

18°E

26°E

 $\mathbf{*}$

Example 2: The importance of long range transport

Two superimposed CH₄ plumes on the same day:

- At 2km, DLR Cessna detects a CH_4 plume of ~15ppb \rightarrow local wetland emissions.
- At 6km, SAFIRE ATR42 detects a plume of ~50ppb associated to a CO plume

→transported fire emissions from Canada and Siberia (verified through backtrajectory

Impact on columns retrieved from space

Plume height	Only 2 km	Only 6 km	Both 2 and 6	
∆MT-CH4 (IASI)	0.15 ppb	7.05 ppb	7.20 ppb	
∆XCH4 (S5P)	0.53 ppb	1.77 ppb	2.30 ppb	

→ Implication for flux inversion, also highlighting the potential of joined TIR/SWIR obs

Satellite validation

Plans to validate TROPOMI/S5P XCH4 and IASI MT-CH4

BUT... almost 10 days of clouds/rain !

First day after campaign end

What could have been done... a look at MAGIC2020 and AirCore-Fr

Validation of TROPOMI/Sentinel-5P 11 June 2020 – SW of France

Deployement of 4 EM27/SUN, SAFIRE Falcon20 and AirCores from Aire-sur-l'Adour along Sentinel5-P track

 $XCH_4^{S5P/OPER}-XCH_4^{EM27}=-4.6 \pm 19.7 \text{ ppb}$

Validation with AirCore from French network (3 sites with monthly launches)

Satellite	Version	Gas	mean ± stdv (AirCore-Satellite)	#FOVs	#AirCore
IASI	v10.2	CH_4	0.1 ± 13.0 ppb	3037	35
TROPOMI	L2 OPER	CH₄	-9.5 ± 11.9 ppb	8472	33
OCO-2	LtCO2 B10206 Ar	CO,	0.99 ± 0.93 ppm	5212	11

AirCore-Fr data from https://aircore.aeris-data.fr

Lessons learned from MAGIC

- Large field (short) campaigns complement networks by:
 - targeting **specific objectives**: e.g. surface/atm conditions, remote locations, network gaps
 - offering high density measurements for spatial representativity
 - enabling the **combination of several instruments** that complement each other ('what is a column?')
- AirCore is extremely valuable to link together various kind of products (profiles vs. weighted columns)
 - → Large-scale campaigns should target at least one-month duration to cope with bad weather.

→ Regular AirCore launches in coordination with sat overpass (such as done in AirCore-Fr program) and increase in spatial coverage (e.g. high latitudes, tropics) are strongly recommended.

- → Need to validate L2 but also to establish a robust relationship between concentrations and fluxes: Data to support the evaluation and improvement of transport models should be included in campaigns.
- \rightarrow Funding not only the instrument part but also data exploitation.
- Large field campaigns require huge efforts in terms of preparation, logistics, human resources and budget.

→ It is strongly recommended to combine validation of several space missions and scientific objectives.

→ A joined framework between agencies (CNES, ESA, EUMETSAT, DLR) would strongly help with campaign ambition and administrative aspect (budget gathering, reporting, etc.)

Next campaign: MAGIC-Tropics 2026

• Objectives:

- Study of natural GHG emissions:
 - CH₄ emissions from wetlands and pastures
 - Biomass burning (arc of deforestation)
- Satellite validation of flying satellites and specific Cal/Val for:
 - MicroCarb (launch: March 2025 TBC)
 - IASI-NG/Metop-SG (launch October 2025 TBC)

• Date and locations:

- Summer 2026 (6 weeks in June-August) combined with CoMet3.0 DLR campaign
- Campaign-HQ: Palmas, Tocantins region

• If interested in joining the already 14 teams involved, please contact cyril.crevoisier@lmd.ipsl.fr

Wetland CH₄ emissions

GOES Fire Rad. Energy

