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QG-A and QG-MC waves propagating over a steady background magnetic field.
LIntroduction

LGcomagnctic data and models

Magnetic field records

Two means:
Satellite Data Ground observatories Data

(Swarm constellation) (e.g. Toronto observatory)
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QG-A and QG-MC waves propagating over a steady background magnetic field.
|—Im:roduction

‘—Geomagnetic data and models

Magnetic field models — Spherical Harmonic
decomposition to downward continue the data to the CMB.

i}

Radial magnetic field; Secular variation and inverted core
flows at CMB [Finlay et al. 2023]. 2/13



QG-A and QG-MC waves propagating over a steady background magnetic field.
I—Introduction

LMain ideas

Geomagnetic signal is complex.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LIntroduction
LI\/Iain ideas

» Quasi Gestrophic — Magneto-Coriolis (QG-MC)
waves are possible rapid MHD modes in the Earth’s outer
core |Gerick et al. 2020];

» these waves have also been observed in the magnetic
data by [Gillet et al. 2022].

This study: (Task R KO+51 ESA-4DEarth)

Propagating waves over a non-axisymmetric steady magnetic
base state that satisfies insulating BCs at the CMB
= following [Jault 2008| and |Gillet et al. 2011].

— MHD equations with linear approximation around a
long-term base state;

— Time-scales separation between waves and convection is
crucial;

— Parameter’s space exploration [Barrois & Aubert, 2024,
under review.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LMethodology
LEquations

Linearised MHD equations without convection:
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— Featuring the Inertia, Coriolis, and forces.

» 3 dimensionless numbers Lehnert \ = 7q /74,
Lundquist S = 7,/74, magnetic Prandtl Pm = 7,/7,;

» Time unit is the Alfvén time 74, magnetic field unit is the
Elsasser unit /p p {27, velocity unit is arbitrary.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LMethodology
LInitial Conditions

Base magnetic state is analytical and involves Bessel
functions of the first kind and their roots.

— Non-axisymmetric field with non-zero B2 at the equator.

» The outer core fluid is magnetically entrained after an
impulse of the inner core rotation.

» Two main configurations: Fk =1 x 1077 (Case 1)
Ek =3 % 101§ (Case 2):
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LResults

LTemporal evolution

Velocity and Radial magnetic fields evolution, Case 1
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» We can observe Torsional Wave (TW), QG-Alfvén
(QG-A) and QG-Magneto-Coriolis waves (QG-MC).
» Clear westward drift as the QG-A/QG-MC front arrives.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LResults

LTorsional wave

Columnar zonal velocity

Case 1 Case 2
(a) (b)
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» Time arrival independent of the configuration.
» Thickness is divided by ~ 1.5 between the 2 cases
(compatible with ~ S~/% as in [Jault 2008]).
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QG-A and QG-MC waves propagating over a steady background magnetic field.

L Results

L Torsional wave

Scaling law
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Magnetic Ekman, Eky;

» Thickness follows ~ Ek}\f already mentioned in [Jault
2008]; Influence of Pm and X as suggested.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LResults

L Columnar Force balances

Columnar Force balance along the fast-longitude, Case 1
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» Signal is initially dominated by Inertia and Lorentz =
QG-Alfvén, until ~ 0.7 — 174 and s ~ 1 — Become
dominated by Coriolis and Lorentz = QG-MC.

» QG-A and Rossby waves are also emitted from the
CMB.
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QG-A and QG-MC waves propagating over a steady background magnetic field.

L Results

LColumnar Force balances

Columnar Force balance along the fast-longitude, Case 2

V x Inertia V x Lorentz V x Coriolis
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» Same conclusions can be drawn as from previous case —
QG-A waves progressively become QG-MC waves at
~ mid-shell while the period remains mostly unchanged
while approaching CMB.

» Rossby waves are less pronounced.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
LResults
LEnergy ratio

Columnar Magnetic to Kinetic Energy ratio for Case 1
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» Energetic equipartition, Ey,g ~ Ejiy, in the torsional
wave (zonal signal) and at the start of the simulation.

» Changes to Epag > Eyin while approaching the CMB.

» Rossby waves domain (bottom right) dominated by the
Kinetic energy.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
Discussion & conclusion

LTake home message

Perspectives

» Viable and relatively inexpensive basis for the rapid
dynamics model: possibility to rapidly explore the
parameters space and expand the study.

Several predictions from the literature are retrieved:

Conclusion

» Disruptions in the underlying QG-MAC balance produce
QG-A waves that evolve into QG-MC waves after ~ 17 4.

» Confirms the QG-MC nature of the rapid magnetic
signals observed near the equator.

— This story holds at several Ek, Pm and S numbers.
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background magnetic field.




QG-A and QG-MC waves propagating over a steady background magnetic field.
L Extra methods
LBoundary Conditions

Boundary conditions and ICB impulse forcing

— Mechanical BCs are stress-free, Electromagnetic BCs are
conducting IC/insulating Mantle.

— The outer core fluid is magnetically entrained after an
impulse of the inner core rotation.

» The impulse forcing follows [Jault 2008] and |Gillet et al.
2011]:

t 2
*)
Qo =AQe \T -

» Duration of the forcing is a small constant fraction of the
Alfvén time:
™ =1.1x10"2.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
L Extra methods

L Parameter range

Parameter range

— Two main configurations:

Case 1 Case 2
i Ry e e | R I A (I Rl
IR R 144 Y 7.9 % 1072
. Y 1596 6825
eatviear 115210-F 2.6 x 10~

» the same hyperdiffusivity in both cases has been
employed to reach these conditions;

» Pm, A and S have also been varied in other cases (not
shown, see [Barrois & Aubert, 2024, under revieu).
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QG-A and QG-MC waves propagating over a steady background magnetic field.
L Additional results
LResiduals

Residuals = z-Avg Lorentz — Coriolis —dw, /dt, Case 1 and 2
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» Residuals can be attributed to the remaining viscous

force (more prominent near the boundaries) — consistent

with the observed decrease between cases 1 and 2.
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QG-A and QG-MC waves propagating over a steady background magnetic field.
L Additional results

LDispcrsion relation derivation

Dispersion relation from [Gillet et al. 2022| Eq.(19).

» Neglecting magnetic dissipation;
» Assuming that the radial length scales are much shorter
than horizontal length scales;
» Under the plane wave ansatz @) oc elibstmé+wt)] _ with ¢ a
stream function.
A dispersion relation for QG-MC waves is derived:

ms) mQ \ 2
w:Wi\/(W) EVAE

where h is the half-height of the container.
mo 1/3 .
W) (:ICQ ~ 17 in
our configuration) — the period of MC waves is not distinct from
that of Rossby or QG Alfvén waves.

— Note that for k ~ kg — where kg = (
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QG-A and QG-MC waves propagating over a steady background magnetic field.
L Additional results

LDispcrsion relation derivation

Dispersion relation for (ug) (FFT in ¢t; DCT in s; sum all ¢).

QG-A-MC pulsation {eq. 18) at s = (1645 (7366
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» Radial wave numbers and pulsations are roughly
compatible with the wave dispersion relation.

13/13



QG-A and QG-MC waves propagating over a steady background magnetic field.
L Additional results
LGrroup Velocity

Dispersion relation from [Gillet et al. 2022| Eq.(19).

» For the cylindrical radial component of the group velocity:
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