

Characterisation of hydromagnetic waves propagating over a steady non-axisymmetric background magnetic field.

Olivier Barrois¹ Julien Aubert¹

¹ **IPGP** Paris

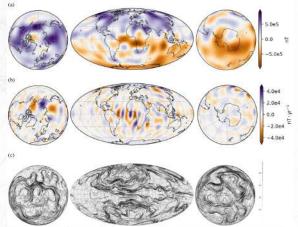
Swarm 10 Year Anniversary Conference; April 08, 2024

 $\ensuremath{\operatorname{QG-MC}}$ waves propagating over a steady background magnetic field.

Introduction

Geomagnetic data and models

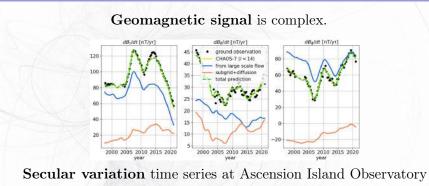
Magnetic field records

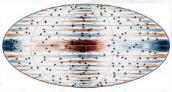


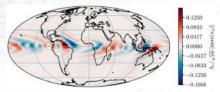
Satellite Data (Swarm constellation) Two means: Ground observatories Data (e.g. Toronto observatory) QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill Introduction$

Geomagnetic data and models

Magnetic field models \rightarrow Spherical Harmonic decomposition to downward continue the data to the CMB.




Radial magnetic field; Secular variation and inverted core flows at CMB [Finlay *et al.* 2023].


2/13

Introduction

L Main ideas

 $u(r_{\text{CMB}})$ [Gerick et al. 2020] $B_r(r_{\text{CMB}})$ [Gillet et al. 2022]

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill \hf$

└─Main ideas

- Quasi Gestrophic Magneto-Coriolis (QG-MC) waves are possible rapid MHD modes in the Earth's outer core [Gerick *et al.* 2020];
- ► these waves have also been observed in the magnetic data by [Gillet *et al.* 2022].

This study: (Task R KO+51 ESA-4DEarth)

Propagating waves over a non-axisymmetric steady magnetic base state that satisfies insulating BCs at the CMB \Rightarrow following [Jault 2008] and [Gillet *et al.* 2011].

 \rightarrow MHD equations with **linear approximation** around a long-term base state;

 \rightarrow **Time-scales** separation between waves and convection is crucial;

 \rightarrow Parameter's space exploration [Barrois & Aubert, 2024, *under review*].

-Methodology

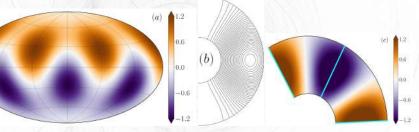
- Equations

Linearised MHD equations without convection:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \frac{2}{\lambda} \boldsymbol{e}_{z} \times \boldsymbol{u} = -\nabla \Pi + \frac{1}{Pm \lambda} \left[(\nabla \times \mathbf{b} \times \mathbf{B}_{0}) + (\nabla \times \mathbf{B}_{0} \times \mathbf{b}) \right]$$

$$rac{\partial \mathbf{b}}{\partial t} =
abla imes (oldsymbol{u} imes \mathbf{B}_0) + rac{1}{S} \,
abla^2 \mathbf{b} \, .$$

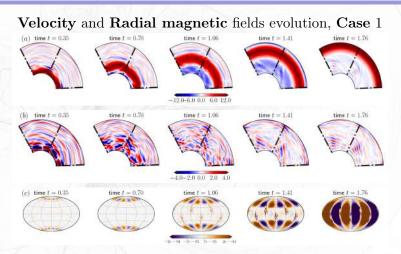
 \rightarrow Featuring the Inertia, Coriolis, and Lorentz forces.


- ► 3 dimensionless numbers Lehnert $\lambda = \tau_{\Omega}/\tau_{A}$, Lundquist $S = \tau_{\eta}/\tau_{A}$, magnetic Prandtl $Pm = \tau_{\eta}/\tau_{\nu}$;
- Time unit is the Alfvén time τ_A , magnetic field unit is the Elsasser unit $\sqrt{\rho \mu \Omega \eta}$, velocity unit is arbitrary.

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill \$

└─Initial Conditions

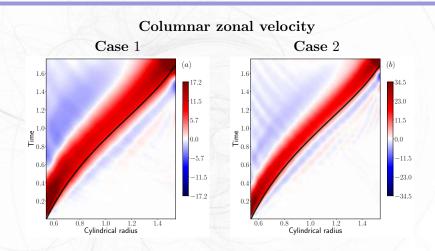
Base magnetic state is analytical and involves Bessel functions of the first kind and their roots.


 \rightarrow Non-axisymmetric field with non-zero B_r^2 at the equator.

- ► The outer core fluid is magnetically **entrained** after an **impulse** of the **inner core rotation**.
- Two main configurations: $Ek = 1 \times 10^{-7}$ (Case 1) $Ek = 3 \times 10^{-10}$ (Case 2).

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill _ {\rm Results}$

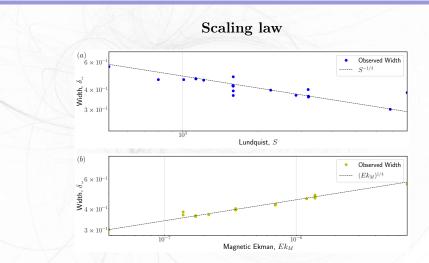
-Temporal evolution


► We can observe **Torsional Wave** (TW), **QG-Alfvén** (QG-A) and **QG-Magneto-Coriolis waves** (QG-MC).

► Clear westward drift as the QG-A/QG-MC front arrives.

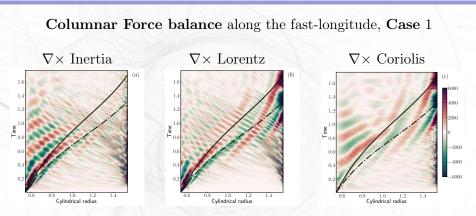
QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill = \hfill =$

-Results

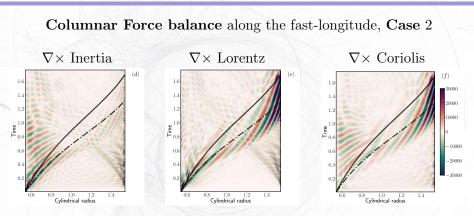

-Torsional wave

▶ Time arrival independent of the configuration.
 ▶ Thickness is divided by ~ 1.5 between the 2 cases (compatible with ~ S^{-1/4} as in [Jault 2008]).

-Results

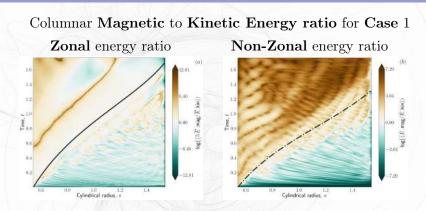

-Torsional wave

• Thickness follows ~ $Ek_M^{1/4}$ already mentioned in [Jault 2008]; Influence of Pm and λ as suggested.


QG-A and QG-MC waves propagating over a steady background magnetic field. $\Box_{\rm Results}$

Columnar Force balances

- ► Signal is initially dominated by Inertia and Lorentz = QG-Alfvén, until ~ $0.7 1\tau_A$ and $s \sim 1 \rightarrow$ Become dominated by Coriolis and Lorentz = QG-MC.
- QG-A and Rossby waves are also emitted from the CMB.


Columnar Force balances

- ► Same conclusions can be drawn as from previous case → QG-A waves progressively become QG-MC waves at ~ mid-shell while the period remains mostly unchanged while approaching CMB.
- ► Rossby waves are less pronounced.

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill \$

Energy ratio

- Energetic equipartition, $E_{\text{mag}} \simeq E_{\text{kin}}$, in the torsional wave (zonal signal) and at the start of the simulation.
- Changes to $E_{\text{mag}} \gg E_{\text{kin}}$ while **approaching the CMB**.
- ▶ Rossby waves domain (bottom right) dominated by the Kinetic energy.

- Discussion & conclusion
 - Take home message

Perspectives

► Viable and relatively inexpensive basis for the rapid dynamics model: possibility to rapidly explore the parameters space and expand the study.

Several **predictions** from the literature are **retrieved**:

Conclusion

- ► Disruptions in the underlying QG-MAC balance produce QG-A waves that evolve into QG-MC waves after ~ 1τ_A.
- Confirms the QG-MC nature of the rapid magnetic signals observed near the equator.
- \rightarrow This story **holds** at several Ek, Pm and S numbers.

ke home message

Thank you for your attention

YEAR ANNIVERSARY SCIENCE CONFERENCE

SWARM

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill \hfill \ensuremath{\mathsf{Extra}}$ methods

Boundary Conditions

Boundary conditions and ICB impulse forcing

 \rightarrow Mechanical BCs are stress-free, Electromagnetic BCs are conducting IC/insulating Mantle.

 \rightarrow The outer core fluid is magnetically entrained after an impulse of the inner core rotation.

▶ The **impulse forcing** follows [Jault 2008] and [Gillet *et al.* 2011]:

$$\Omega_{IC} = \Delta \Omega \, e^{-\left(\frac{t}{\tau^*} - 3\right)^2},$$

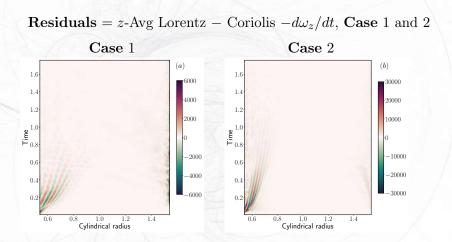
Duration of the forcing is a small constant fraction of the Alfvén time:

$$\tau^* = 1.1 \times 10^{-2}$$
.

-Extra methods

Parameter range

Parameter range


 \rightarrow Two main configurations:

	Case 1	Case 2
$Ek = \tau_{\Omega} / \tau_{\nu}$	1×10^{-7}	3×10^{-10}
$Pm = \tau_{\eta}/\tau_{\nu}$	0.144	7.9×10^{-3}
$S = \tau_{\eta} / \tau_{\mathcal{A}}$	1596	6825
$\lambda = au_{\Omega} / au_{\mathcal{A}}$	$1.1 imes 10^{-3}$	$2.6 imes 10^{-4}$

- the same hyperdiffusivity in both cases has been employed to reach these conditions;
- ▶ Pm, λ and S have also been varied in other cases (not shown, see [Barrois & Aubert, 2024, *under review*]).

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill Additional results$

Residuals

▶ Residuals can be attributed to the remaining viscous force (more prominent near the boundaries) \rightarrow consistent with the observed decrease between cases 1 and 2.

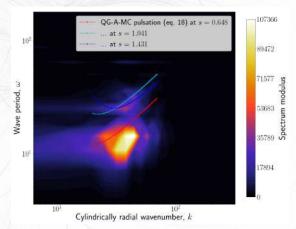
QG-A and QG-MC waves propagating over a steady background magnetic field. Additional results

Dispersion relation derivation

Dispersion relation from [Gillet et al. 2022] Eq.(19).

- ► Neglecting magnetic dissipation;
- Assuming that the radial length scales are much shorter than horizontal length scales;
- Under the plane wave ansatz $\psi \propto e^{[i(ks+m\phi+\omega t)]}$ with ψ a stream function.
- A dispersion relation for QG-MC waves is derived:

$$\omega = rac{m\Omega}{k^2h^2} \pm \sqrt{\left(rac{m\Omega}{k^2h^2}
ight)^2 + V_{\mathcal{A}}^2k^2}\,,$$


where h is the half-height of the container.

 \rightarrow Note that for $k \sim k_0$ – where $k_0 = \left(\frac{m\Omega}{V_A h^2}\right)^{1/3}$ ($k_0 \sim 17$ in our configuration) – the period of MC waves is not distinct from that of Rossby or QG Alfvén waves.

QG-A and QG-MC waves propagating over a steady background magnetic field. $\hfill \hfill Additional results$

Dispersion relation derivation

Dispersion relation for $\langle u_{\phi} \rangle$ (FFT in t; DCT in s; sum all ϕ).

 Radial wave numbers and pulsations are roughly compatible with the wave dispersion relation. QG-A and QG-MC waves propagating over a steady background magnetic field. └─Additional results └─Group Velocity

Dispersion relation from [Gillet et al. 2022] Eq.(19). ▶ For the cylindrical radial component of the group velocity: $\frac{\partial \omega}{\partial k}$ $2m\Omega$ $\simeq \pm V_{\mathcal{A}}(s)$ $\overline{k^3h(s)^2}$ time t = 0.35Azimuth, ϕ 0.6 0.6 Cylindrical radius, s (a)time t = 0.35time t = 0.70time t = 1.06time t = 1.41time t = 1.76Azimuthal wavenumber, 20 0.6 0.9 1.2 0.6 0.9 1.2 1.5 0.6 0.9 1.2 0.6 0.9 1.2 1.5 0.6 0.9 1.2 Cylindrical radius, s (b)