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Permafrost Carbon Feedback

What is it and why is it important?

Due to climate change, rising global 

temperatures continue to accelerate 

thawing permafrost, exposing large 

quantities of ancient frozen carbon to 

microbial decomposition.

Carbon released from thawing permafrost is 

a climate change catalyst - and when 

coupled with anthropogenic-induced 

warming - trigger, accelerate and sustain a 

positive self-reinforcing nonlinear carbon-

climate feedback for hundreds of thousands 

of years (Schuur et al., 2015).
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Permafrost Carbon Feedback

How is it a challenging problem?

This document has been reviewed and determined not to contain export controlled technical data. 4

▪ Big Data: Operating in a space of diametrically opposing issues to store, process, and analyze information over space and 

time, i.e., scarcity of field data or an over-abundance of data acquired from remote sensing and modeling resources.

▪ Remote Sensing: The ability to quantify or infer the magnitude, rate, and extent of the permafrost carbon feedback (i.e., 

thaw variability, carbon release) with high confidence across space and time is restricted with remote sensing platforms 

(Miner et al., 2021; Gay, et al., 2023; Esau et al., 2023).

▪ Modeling: Subroutines and interactions governing earth system models (ESMs) vary widely, with many overlooking the 

dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et al., 2017; Randall et al., 2007).

5 Sep 24

2024 European Polar Science Week

Gay et al., 2024. Under Review



jpl.nasa.gov

Permafrost Carbon Feedback

What solutions help reconcile these challenges?

Fortunately, artificial intelligence (AI) optimizes complex earth 

system data processing, captures nonlinear relationships, and 

improves model skill with reduced error.

This document has been reviewed and determined not to contain export controlled technical data. 5
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We pursued an AI approach resulting in GeoCryoAI, a multimodal hybrid ensemble learning 

formulation that leverages site-level in situ measurements, remote sensing observations, and 

modeling outputs across Alaska.
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Study Domain and Data Dichotomy

The study domain consisted of Alaska (1.723M 

km2), covering 26.92% of the NASA ABoVE 

Domain (6.4M km2) and 11.88% of the Arctic 

landscape (14.5M km2).

After transformation, dimensionality reduction, 

trend removal, time-delayed supervision, and 

regression analyses, model training initializes 

12.1M parameters and high dimensional, time-

variant multimodal hyperspatiospectral datasets:

▪ 2.96M in situ measurements (1030 field sites)

▪ 4.29B airborne observations (693 flight lines)

▪ 4.65B process-based model outputs

This document has been reviewed and determined not to contain export controlled technical data. 6
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Figure 2. The panels above illustrate the methodology surrounding multimodal data acquisition 

and pre-processing of in situ measurements, airborne remote sensing observations, and process-

based modeling outputs. The top panel depicts the State of Alaska, with the left figure consisting 

of white points representing over 2.96 million in situ and flux tower data measurements from 

1030 sites distributed across four census tract-delineated subdomains denoted by colorized 

polygons (i.e., The North Slope [blue], Interior Boreal [violet], Seward Peninsula [green], and 

the Yukon-Kuskokwim Delta [red]). The ground-based measurements associated with the PCF 
(i.e., CH4, CO2, ALT) served as teacher forcing data points during the preliminary stages of the 

model training process (Gay et al., 2023). In addition, the middle figure in the top panel 
illustrates the distribution of airborne acquisitions with over 6.71 billion data points (i.e., 198 

UAVSAR and 653 AVIRIS-NG flight lines, 2017-2019, 2022) while the rightmost figure 
resolves 4.79 billion process-based model outputs derived from SIBBORK- TTE (i.e., 300-year 

100 m2 spatially-explicit subplots, i.e., red boxes [1800-2100]) and TCFM- Arctic (i.e., 13-year 
1 km2 mesh grid quantifying carbon fluxes [2003-2015]. The middle panel illustrates each data 

modality; the leftmost diagram depicts in situ and flux tower collection; the middle figure 
illustrates airborne-derived observations; and the rightmost displays process-based model 

simulations. The bottom panel consists of data representation and scaling methods for 
assimilation, i.e., from left to right: ground-based and flux-derived time series pre-processing, 

imaging spectroscopic anomaly detection, and interferometric-derived height displacement (i.e., 

frost heave, thaw subsidence), and process-based model output post-processing. Imagery data 
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Data Dichotomy

What are the different modalities?

This document has been reviewed and determined not to contain export controlled technical data. 7

24.42 km24.42 km24.42 km24.42 km

31.40 km 31.40 km 31.40 km
31.40 km

Eight Mile Lake AVng_242A-242Z_FL194 AVIRIS-NG: (RGB; 44.914 km), ang20170706t183519_rdn_v2p9 Eight Mile Lake, Denali North UAVSAR (L-band, polSAR RPI/inSAR VV/VV), 2017 July-September ∆) denalN_09115_17066-008_17100-

003_0094d_s01_L090_01; 29396, 4811, 4.99m, 17-Jun-2017 22:29:35-22:41:16 UTC-19-Sep-2017 21:30:17-21:41:14 UTC, 160-km length of 

processing data (Linear Power, Phase Radians)
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Data Dichotomy

What are the different modalities?
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How is scale reconciled?

Spatial Disaggregation
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GeoCryoAI
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GeoCryoAI

The engine under the hood

The GeoCryoAI architecture is constructed with a process-constrained ensemble learning hybridized framework of stacked convolutionally-layered long 

short-term memory-encoded recurrent neural networks optimized with a hyperparameter dictionary and a Bayesian Optimization search algorithm.

This document has been reviewed and determined not to contain export controlled technical data. 11
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Results

Cost Functions and Performance

This document has been reviewed and determined not to contain export controlled technical data. 12

                        

 
 
 
 
  
 
 
 
 
  
 
 
  
  
 
 
 
  
 
 
  
 
 

                                                                       
                                  

                        

 
 
 
 
  
 
 
  
 
 
 
  
  
  
  
 
 
  
 
 
 
  
 

                                                                       
                                    

                        

 
 
 
  
  
 
  
 
 
  

  
  
 
 
  
  
  
  
 
 
  
 
 
 
  
 

                                                                       
                                      

  

 
 
 
 
  
 
 
  
  
 
 
 
  
 
 
  
 
 

                                                         
                                                  

       

                                                         
                                                    

                        

 
 
  
 
 
 
  
  
  
  
 
 
  
 
 
  
 
 

              

                                                         

                                                           

 
 
  
 
 
  

  
 
  
 
  
  
 
  
 
 
 
  
 
 
 
  
 

Time series analyses of ALT, CO2, and CH4 in situ measurements constrained to the temporal coverage of 

CO2 and CH4 flux variability across Alaska, 2006-2019 (top). Loss functions and predictions derived from 

GeoCryoAI simulations of in situ thaw depth and carbon release during teacher forcing (middle) and 

multimodal thaw depth and carbon release data (bottom).

Gay et al., 2023

Active Layer Thickness 
𝛿

𝛿𝑧
cm, 1800-2100

Carbon Dioxide         

µmolCO2mol-1km-2month-1     

1996-2022

Methane                    

nmolCH4mol-1km-2month-1     

1996-2022

Naïve Persistence

Test RMSE 1.997 1.906 0.884

GeoCryoAI      

Teacher Forcing

Test RMSE 1.327 0.697 0.715

Frac. Reduction RMSE -33.55% -63.43% -19.12%

GeoCryoAI 

Multimodality

Test MAE 0.708 0.09 0.591

Test MSE 1.014 0.045 0.481

Test MAPE 0.578 0.156 0.51

Test RMSE 1.007 0.213 0.694

Frac. Reduction RMSE -49.57%, -24.11% -88.82%,-69.44% -21.49%, -2.94%

5 Sep 24

Gay et al., 2024. Under Review

2024 European Polar Science Week



jpl.nasa.gov

So What?

What are the contributions and limitations?

Contributions

▪ GeoCryoAI introduces ecological memory components of a dynamical system by effectively learning the subtle complexities among these 

covariates while demonstrating an aptitude for emulating permafrost degradation and carbon flux dynamics with increasing precision and minimal 

loss. Like previous studies, we found the performance of DL algorithms and ensemble predictions to outperform traditional regression methods 

when estimating GHG fluxes (Virkkala et al., 2021).

▪          ’                    z                                         f       f             g                              timates of ALT 

and permafrost state. Additionally, we address the need to better understand how and to what extent thawing permafrost destabilizes the carbon 

balance in Alaska by integrating a novel multidisciplinary approach and framework that constrains spatiotemporal complexities, simulates nonlinear 

interactions among PCF covariates, refines traditional model parameterizations, and affords the flexibility to ingest and assimilate multimodal data 

to simulate rapid and stochastic thaw events.

Limitations

▪ Though validation and testing loss improved for CH4, forecasting the CH4 signal variability was challenging during teacher forcing (i.e., failed to 

stabilize during abrupt change in the CH4 signal and consistently overestimated CH4 flux). By introducing more data into the framework, this 

discrepancy was ameliorated with limited validation and testing loss changes. However, new challenges emerged, and the model failed to capture 

and predict initial pulses of thaw subsidence and CO2 release. 

▪ The model presented minor prediction errors and exposure biases that compounded iteratively, and the teacher forcing approach simplified the 

loss landscape in exchange for computational efficiency. In addition, the vanishing and exploding gradients presented multiple challenges 

throughout training, including the risk of overfitting due to model complexity (i.e., dampened with dropout generalization). Additional uncertainties 

may originate from landscape-level dynamics and regional lagged effects in response to increased warming.

This document has been reviewed and determined not to contain export controlled technical data. 135 Sep 24
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Does GeoCryoAI work and is it useful?

Summary and Significance

Problem: Reconciliation of Data Dichotomy with Artificial Intelligence

Application: Permafrost Carbon Feedback

GeoCryoAI ingests a huge amount of data (~15.7B measurements and observations) to learn, simulate, and 

forecast primary constituents of the permafrost carbon feedback with prognostic and retrospective 

capabilities.

With more gravitation towards implementing AI/ML approaches to better understand high-latitude dynamics 

recently (e.g., Brovkin, Nitze, Grosse, Pastick), this study underscores the significance of thaw-induced 

climate change exacerbated by the PCF and highlights the importance of resolving the spatiotemporal 

variability of the PCF as a sensitive harbinger of change.
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Ongoing Research and Steps Forward

What is next?

This document has been reviewed and determined not to contain export controlled technical data. 15

Takeaway: Artificial intelligence is inherently biased by current human understanding of complex systems. However, it is a 

valuable tool for developing climate change mitigation strategies, infrastructure security, and global, federal, state, and local 

policymaking. Ongoing research will further elucidate on the PCF and delayed subsurface phenomena by:

▪ Enrichment | Expanding the flexibility, efficiency, and knowledge base of the model with supercomputing and AI in support 

of current and future missions to minimize loss and improve performance (e.g., AVIRIS-3, UAVSAR, PREFIRE, NISAR, 

CRISTAL; SBG TIR)

▪ Development | Resolving the zero-curtain effect with subsurface thermal gradients and freeze-thaw transitions and 

generating Circumarctic zero-curtain space-time maps using radar polarimetry, thermal imaging, and quantum AI 

technology to distribute to the State of Alaska, First Nations, and the USGS as a JPL-led first-order effort to engage 

leadership and identify cross-sector risks at local, state, regional, and global levels (e.g., critical infrastructure damage, 

disturbance tipping points, cultural vulnerabilities).
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Sentinel-5P, OCO-2, OCO-3, Sentinel-6, PREFIRE, AWS, MAIA, NISAR, CRISTAL, Harmony (Credit: eoportal, NASA JPL, NASA, ESSP, ESA)
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