Ozone trends in the stratosphere derived using merged Ozone_CCI datasets

ESA Climate Change Initiative: Ozone

Viktoria F. Sofieva¹, Monika Szelag¹, Johanna Tamminen¹, Carlo Arosio², Alexei Rozanov², Mark Weber², Doug Degenstein³, Adam Bourassa³, Daniel Zawada³, Michael Kiefer⁴, Alexandra Laeng⁴, Gabriele Stiller⁴, Kaley A. Walker⁵, Patrick Sheese⁵, Daan Hubert⁶, Michel van Roozendael⁶, Christian Retscher⁷, Robert Damadeo⁸

- ¹ Finnish Meteorological Institute, Helsinki, Finland
 ² Institute of Environmental Physics, University of Bremen, Bremen, Germany
- ³ Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
- ⁴ Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
- ⁵ Department of Physics, University of Toronto, Toronto, Canada
- ⁶ Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
- ⁷ ESA/ESRIN, Frascati, Italy
- ⁸ NASA Langley Research Čenter, Hampton, VA, USA

Ozone_CCI long-term datasets

SAGE-CCI-OMPS+

- 10° latitude x month, since 1984
- MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP)
 - 10° latitude x 20 ° longitude x month, since 2001
- High-resolution dataset of ozone profiles (LIMB-HIRES)
 - 1° x 1° x 1 day, since 2004

×10¹²

From SAGE-CCI-OMPS to SAGE-CCI-OMPS+

- Original version SAGE-CCI-OMPS:
 - 7 instruments: SAGE II, OSIRIS, GOMOS, MIPAS, SCIAMACHY, ACE-FTS, OMPS-LP (USask)
- SAGE-CCI-OMPS+ dataset
 - New versions of datasets from
 - MIPAS (v8)
 - ACE-FTS (v4.1/4.2)
 - OSIRIS v7
 - > OMPS-LP: both Usask and UBr data
 - New instruments
 - SAGE III/ISS
 - POAM III
- Better coverage of polar regions
- Better coverage of the UTLS

Evaluation of ozone trends in the stratosphere

Ozone trends in partial columns

Ozone trends in % dec-1

Seasonal dependence of ozone trends

- Adapted from Szelag et al., 2020
- trends in % per decade.
- statistically significant trends at 95 % confidence level are shaded (red, blue)

- Different merged data sets show very similar results
- The upper stratospheric ozone is recovering, and the trends are larger during local winters
 - In the tropics, there is very strong seasonal dependence of ozone trends at all altitudes. The trends are changing from positive to negative, depending on altitude and season.
 - In the lower/middle stratosphere, there is hemispheric asymmetry during the local summers at midlatitudes with negative trend in the North and positive trend in the South.

Merged GRIdded Dataset of Ozone Profiles (MEGRIDOP)

- Combined data from 6 limb-viewing satellite instruments: MIPAS, SCIAMACHY, GOMOS, OSIRIS, OMPS-LP, MLS
- The monthly means in 10°x20 ° latitudelongitude bins and altitudes 10-50 km, it covers years 2001-present
- The dataset is in open access: https://climate.esa.int/en/projects/ozone/ data/

More details:

6707-2021, 2021

Sofieva et al: Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP), Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-

- Statistically significant trends in the upper stratosphere are observed.
- A longitudinal structure is clearly visible in the NH mid-latitude trends above 25 km: the trends are significantly larger over Scandinavia/Atlantic ocean (5-6 % dec⁻¹) than over Siberia (~1 %dec⁻¹).
- Positive statistically significant trends (1-2 % dec⁻¹) are observed also at SH midlatitudes (~40°-50°S) at 25 km.
- The first attempt to evaluate ozone trends in polar regions

High-resolution dataset of ozone profiles: LIMB-HIRES

- 1° x 1° x 1 day
- since (2002) 2004
- Original development: the ESA SUNLIT project
- Ozone profile datasets

> MLS, GOMOS, MIPAS, SCIAMACHY, OSIRIS, OMPS-LP, ACE-FTS, SAGE III/ISS Homogenization of ozone profile data from the limb satellites

Interpolation of the limb profiles from each day to 1°x1° horizonal grid

A smooth transition to the adjusted model data below the tropopause

Sofieva et al: Synergy of Using Nadir and Limb Instruments for Tropospheric Ozone Monitoring (SUNLIT), Atmos. Meas. Tech., 15, 3193–3212, https://doi.org/10.5194/amt-15-3193-2022, 2022

High-resolution interpolated dataset: visualization of extreme events

Arctic ozone hole 6 Apr 2020

The role of tropospheric ozone on total column ozone trends

- Data
 - Total ozone column from OMI
 - Stratospheric ozone column from LIMB-HIRES
- Multiple linear regression on deseasonalized anomalies, years 2004-2021:linear term, QBO, ENSO, solar
- At mid-latitudes, tropospheric ozone trend contribute ~10-20% to total ozone trends
- In the tropics, tropospheric ozone column contributes significantly to total column trends

Data availability

• SAGE-CCI-OMPS+, MEGRIDOP

> available at CCI, C3S, LOTUS ftp

- High-resolution dataset of ozone profiles (LIMB-HIRES)
 - will be available soon
- Level 2 HARMonized Dataset of Ozone profiles (HARMOZ_ALT and HARMOZ_PRS) for nearly all limb and occultation instruments
 - > Available at CCI ftp for ESA and TPM instruments
 - For NASA sensors on request
- Level 3 monthly zonal mean data from indivudual instruments are available in CCI and C3S data collections

Ozone trends as seen by Ozone_cci merged datasets: short summary and outlook

- All datasets:
 - ozone is recovering in the upper stratosphere
 - The ozone trends in the middle stratosphere are mostly positive, while they are negative in the UTLS
- Specific attention is needed
 - Trends in the UTLS
 - > Trends in polar regions

Observed and Simulated Ozone trends 2000 to 2020

To address these issues and to monitor ozone recovery, satellite measurements in limbviewing geometry are important