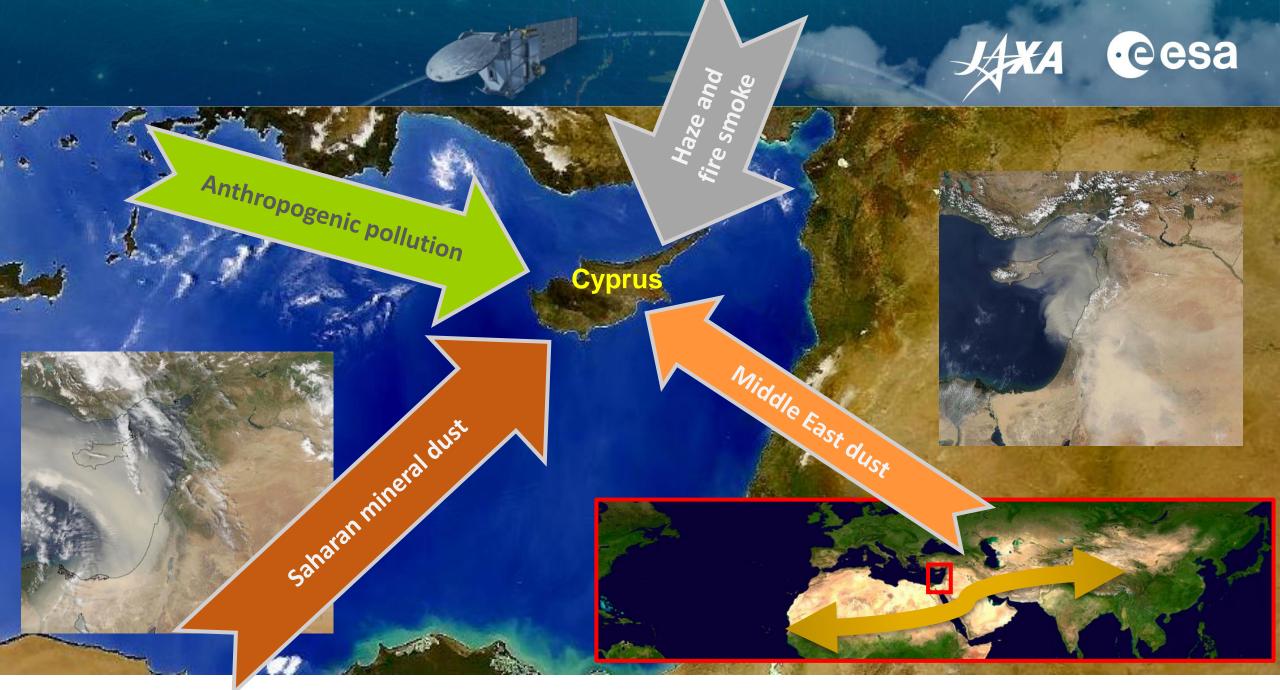


ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop


13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

EVID39: CORAL - Cyprus Observations for EarthCARE vALidation

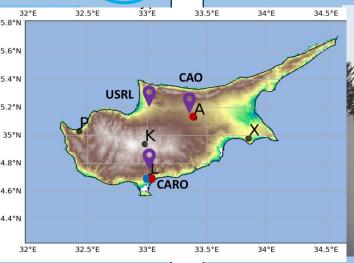
Rodanthi-Elisavet Mamouri, Dragos Ene, Kostas Fragkos, Argyro Nisantzi, Georgia Charalambous, Maria Poutli *ERATOSTHENES Centre of Excellence, Lemesos, Cyprus*Franco Marenco, Maria Kezoudi, Alkistis Papetta

Climate and Atmosphere Deservet Contro (CARE

Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus

ESA-JAXA Pre-Launch EarthCARE Science and Validation Workshop | 13 – 17 November 2023 | ESA-ESRIN, Frascati (Rome), Italy

CORAL consortium

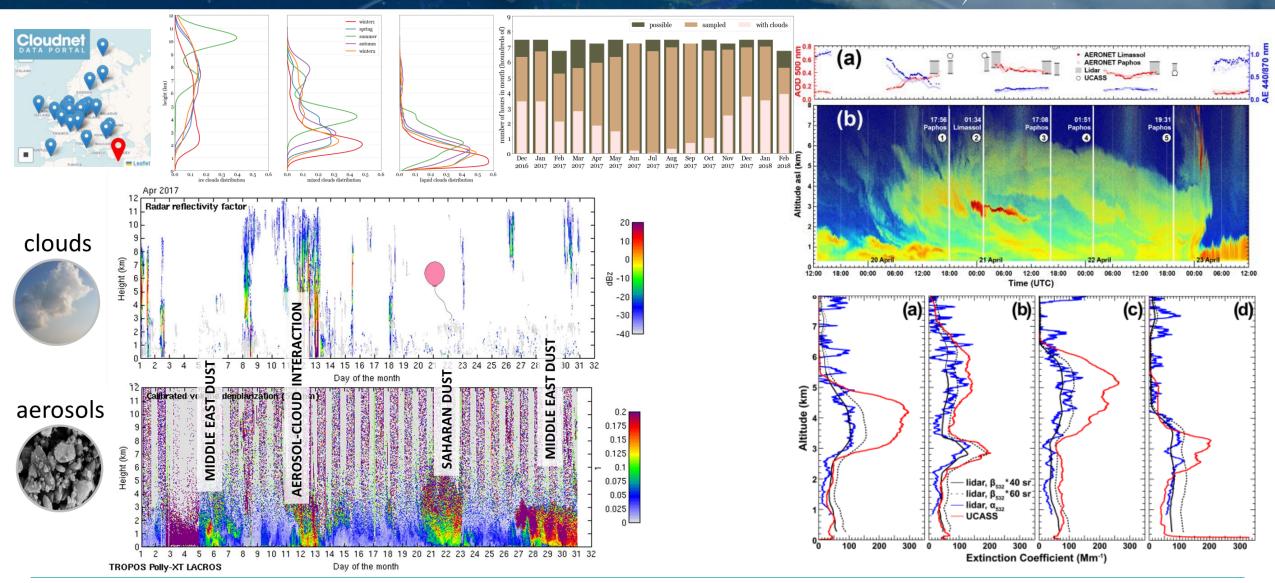

ERATOSTHENES Center of Excellence:

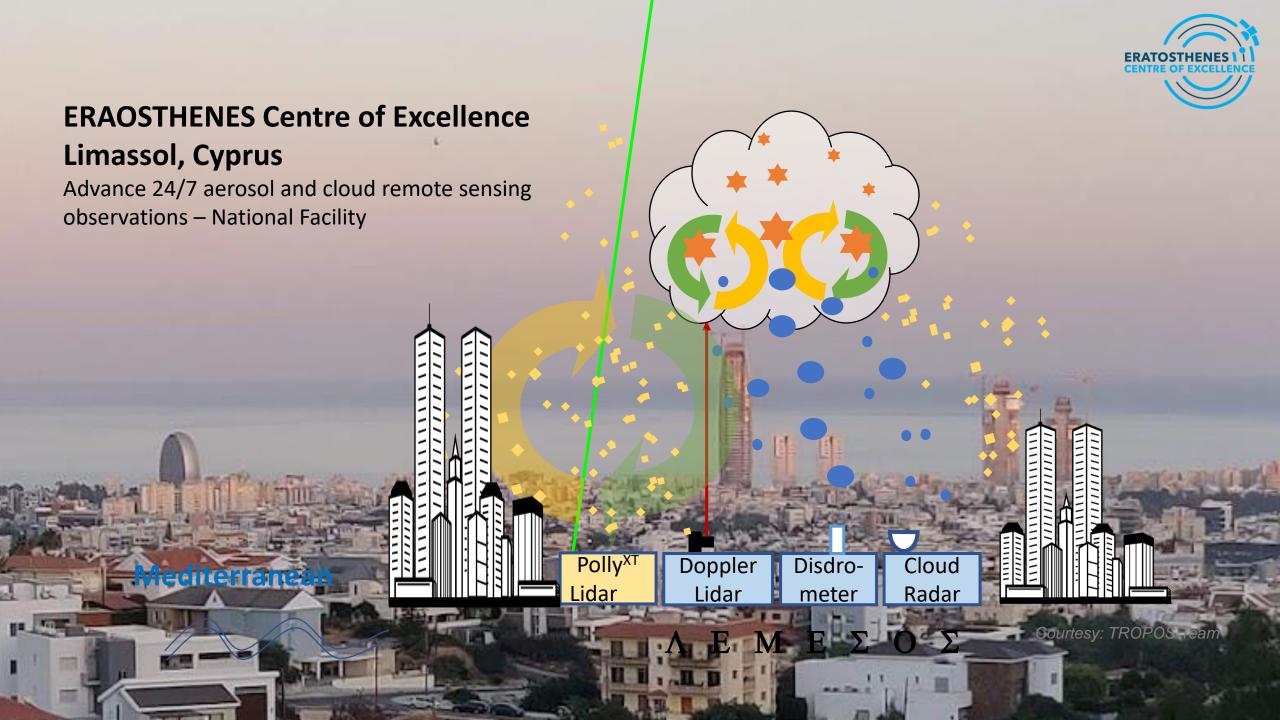
- Limassol, coastal area
- Cyprus Atmospheric Remote Sensing
 Observatory (CARO) planned ACTRIS aerosol and cloud RS observational Platforms
- Solar Radiation observations

CARE-C of the Cyprus Institute

- Nicosia, urban and inland areas
- Cyprus Atmospheric Observatory (CAO) –
 ACTRIS aerosol in situ observational platform
- Unmanned Systems Research Laboratory (USRL) – ACTRIS exploratory platform

Scope of CORAL project and main objectives


- to perform thorough cal/val investigations on EarthCARE cloud and aerosol products over Cyprus, a region well-known for its complex atmospheric environment
- To enhance solar radiation observations
- validation will be performed in coastal and inland and urban stations with
 - Cyprus Atmospheric Remote Sensing Observatory (CARO) ground-based
 Raman/polarization lidar and radar instruments in Limassol, providing unbiased profiles
 of particle extinction, optical depth, backscatter, extinction-to-backscatter ratio and linear
 and circular depolarization ratios for clouds and aerosol;
 - Cyprus Atmospheric Observatory (CAO) ceilometers and sunphotometers at three stations (Nicosia, Agia Marina Xyliatou, and Troodos) and polarization lidar in Nicosia.
 - Drones of the Unmanned Systems Research Laboratory (USRL), providing high-altitude insitu aerosol observations with optical particle counters, impactors and backscattersonde

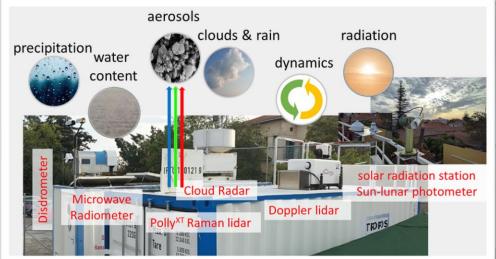


ERATOSTHENES - Cyprus Atmospheric RS Observatory

Funding:

Limassol, Cyprus (34.7°N, 33°E)

less than 2 km from the coastline; conditions representative of typical Mediterranean and Middle East region


AEROSOL REMOTE SENSING OBSERVATIONAL PLATFORM

- AERONET Sunphotometer operates since 2010
- PollyXT operates since 2020
- StreamLine Doppler Lidar Operates since 2023

CLOUD REMOTE SENSING OBSERVATIONAL PLATFORM

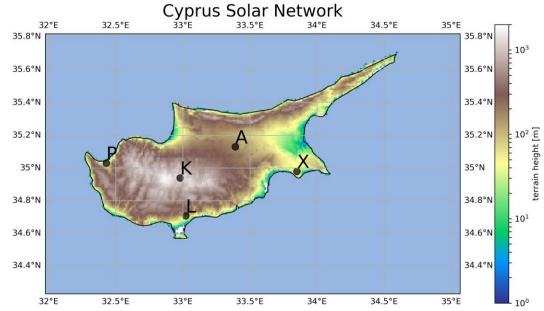
- microwave radiometer ready to be installed;
- ceilometer, disdrometer ready to be installed;
- 35 GHz MiRA cloud radar to be installed January 2024;
- Full operation of the Cloud Platform expected Spring 2024.

Cyprus Atmospheric Remote Sensing Observator **CRS NF Planned for early 2024**

Sky Camera

ERATOSTHENES Cyprus Solar Network

Network composed of 5 stations:


o central station in Limassol (L);

ASI-16 All Sky Imager

- Polis Chrysochous (P);
- Kyperounta (K);
- Athalassa (A) location with radisounding;
- Xylofagou (X).

Instrument type	Model	Measured quantity	Location						
Pyranometer (x6)	MS-80 EKO EKO	Downwelling total	Limassol (x2, one for global and one f						
	Instruments Co., Ltd.	shortwave irradiance	diffuse), other stations (x1)						
		(W/m2)							
Pyrheliometer	MS-57 EKO Instruments Co.,	Direct shortwave	Limassol						
	Ltd.	irradiance (W/m2)							
Pyrgeometer	MS-21 EKO Instruments Co.,	Downwelling longwave	Limassol						
	Ltd.	irradiance (W/m2)							
UV Radiometer (x5)	SUV-E UVE Radiometer Kipp	Erythemal UV	All stations (x1)						
	& Zonen B.V	irradiance (W/m2)							
Spectrophotometer	DMc150 Double	Global spectral (290–	Limassol						
UV/VIS .	Monochromator Bentham	500 nm) irradiance							
	Instruments Ltd	(W/nm·m2)							

Limassol

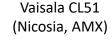
Cloud cover, Cloud

base height

THE CYPRUS

CARE-C: Cyprus Atmospheric Observatory (CAO)

- devoted to long-term monitoring
- 3 stations in Cyprus (Agia Marina Xyliatou, Nicosia, Troodos)
- Polarisation lidar (Elastic backscatter lidar with near-infrared (808 nm) and green (532 nm, Depolarization channel at 532 nm)
- Ceilometers
- Sun-photometers
- Radiative flux station



AERONET sunphotometers (Nicosia, AMX, Troodos)

Radiative flux station (AMX)

CIMEL CE376 Polarisation lidar

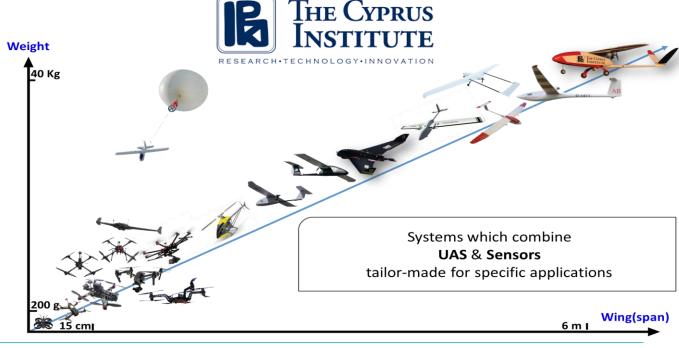
Funding:

These activities are supported until 2024 by the ATMO-ACCESS pilot. Additional support to continue beyond that is being sought.

EVID39: CORAL

CARE-C: USRL

Courtesy of Maria Kezoudi


weater, weater, herter, weater, weater, we take weater, weater,

UAV flights up to 4-6 km for height-resolved observations with the following instruments:

- POPS and UCASS **optical particle counters** (0.1–40 μm)
- GPAC: Impactors for sample collection (particles up to $100 \mu m$)
- COBALD backscatter sondes (particle orientation)

		/	A Partie
ion [ugim3]		A CONTRACTOR OF THE PARTY OF TH	
Mass concentration i			
14			
7	6-15-15		

	SENSOR	UCASS	GPAC P	COBALD	POPS				
	USE	Aerosol size distribution 0.4–20 // 3–40 μm	Impactors (>1μm)	Backscatter ratio (2 orientations)	Aerosol size distribution 0.14–3.3 μm				
)	UAV	7	Skywalker	2015	I-Soar				

Validation activities will involve:

 a continuous observing activity in Limassol in collaboration with similar activities performed in Greece and Europe through other EarthCARE cal/val activities;

ACROSS



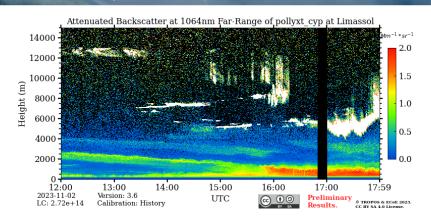
 dedicated campaigns on the island, co-designed and coimplemented by the CARE-C/Cyl using ground-based and airborne observations and ERATOSTHENES CoE providing ground-based remote sensing aerosol and cloud observations based on the instrument's availability

CORAL

Courtesv: TROPOS Team

- esa
- collocated measurements will be performed during ground and airborne campaigns, planned to be carried
 in Cyprus as an initiative of the ERATOSTHENES Centre of Excellence (ERATOSTHENES CoE) and the Climate
 and Atmosphere Research Center (CARE-C) of The Cyprus Institute (for the airborne activities of USRL);
- experiments will be designed such as to achieve the following core objectives:
 - perform a thorough validation of the EarthCARE stand-alone aerosol and clouds products;
 - to utilize the validated aerosol and clouds products in Radiative Transfer Model (RTM) simulations for depicting radiation and further intercompare with high-quality solar irradiance measurements at the surface (ground-based actinometry) and at TOA (spaceborne radiometers, including BBR);
- Validation of the L2 products of the EarthCARE mission;
 - Using ground based lidar and radar to validate the ATLID and CPR L2 products: C-FMR, C-CD, C-TC, C-CLD, ACTC, ACM-CAP, ACM-COM.
 - o L1 products are beyond the scope of the CORAL, but a validation study for ATLID attenuated backscatter is also feasible by both PollyXT and CiMEL lidar systems:
- **Funding:** CARO operation is supported by EXCELSIOR EU project, CAO and USRL activities supported by ATMO-ACCESS project up to 2024.

EVID39: CORAL


Pilot project implementation plan ESA EarthCARE Cal/Val support

Authors: Holger Baars⁽¹⁾, Eleni Marinou⁽²⁾, Rob Koopman⁽³⁾, Stephanie Rusli⁽³⁾, Lucia Mona⁽⁴⁾, Constantino Munoz Porcar⁽⁵⁾, Alejandro Rodríguez⁽⁵⁾, Ewan O'Connor⁽⁶⁾, Martial Haeffelin⁽⁷⁾, Michael Sicard⁽⁸⁾, Patric Seifert⁽¹⁾, Vassilis Amiridis⁽²⁾, Ann Mari Fjæraa⁽⁹⁾, Doina Nicolae⁽¹⁰⁾

- 1) Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
- 2) National Observatory of Athens, Athens, Greece
- 3) European Space Agency (ESA ESTEC), Noordwijk, the Netherlands
- National Research Council of Italy, Institute of Methodologies for Environmental Analysis (CNR-IMAA), Potenza, Italy
- Dept. of Signal Theory and Communications, Remote Sensing Lab. (RSLab), Universitat Politècnica de Catalunya, Barcelona, Spain
- 6) Finnish Meteorological Institute, Helsinki, Finland
- 7) Institut Pierre Simon Laplace (IPSL), CNRS, École Polytechnique, Institut Polytechnique de Paris, France
- 8) Laboratoire de l'Atmosphère et des Cylones (LACy), University of La Reunion, France
- 9) Norwegian Institute for Air Research (NILU), Norway
- 10) National Institute of R&D for Optoelectronics (INOE), Romania

Date: 2023-05-15

- Gain experience on the quality assured measurements and data transfer to EVDC
- First synchronized observations using remote sensing and UAV flights on 25 Oct and 3 Nov 2023 simulated overpasses over Cyprus.
- Atmospheric conditions: Saharan Dust and Cloud formation

Work packages		2023 2024															
		June	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep
		M1	M2	M3	M4	M5	М6	M7	M8	М9	M10	M11	M12	M13	M14	M15	M16
WP 1	Preparation of network rehearsal campaign															9	
WP 2	Network rehearsal campaign																
	EarthCARE workshop Frascati																
WP 3	Preparation of Cal/Val campaign															j.	
Event	EarthCARE rehearsal																
Event	EarthCARE launch																
WP 4	Cal/Val campaign																
	Intercalibration with reference systems																

SETUP

- Aerosol and Clouds ACTRIS remote sensing facilities in Cyprus
- Radiation remote sensing measurements for closure studies
- **UAV** in situ flights collocated with RS measurements

EXPECTED OUTCOMES

- Aerosol and Clouds products validation
- ACI and Radiation closure studies

