HIREC-OF-24-001

TRISMAC 2024@ESRIN 2024.06.26

Emphasizing Space Parts Supply Chain and Space Parts Consortium in Japan

Space Parts Consortium Head of Secretariat Norimitsu KAMIMORI, HIREC

HIREC Proprietary Information

1. HIREC Services

S&MA Support to Space Projects

Radiation Tolerant Tests

FIDES Services (Guideline sales, analysis)

Parts Evaluation and Acquisition Service

S&MA Training

Space Parts(MPU, etc) Manufacturing and Sales

Consultation

Space Parts Up-screening, Programs Writing to FPGA

Certification for Space Parts (on behalf of JAXA)

2. Necessity for Establishment of Space Parts Consortium

 $({\it Motivation})$

- Under Covid-19 situation, some Critical Parts were difficult to buy in timely, and rising the price to extremely high(8 times)
- This situation is improving lately, but we recognized; Japanese space parts supply chain was very weak, particularly in critical parts such as; MPU、 FPGA、 Memory, and Power Unit We need to improve this situation

(Complimentary to JAXA role)

JAXA's main role is identified as "Technical Support to Government"
 So JAXA has no budget for enhancement of space parts supply chain
 Indutries/Private sector are expected to take in place of Space Parts Supply Chain Enhancement.

(Solution for JAXA and Industries/Private sector)

- Industries/Private Sector can request budget associated with Supply Chain enhancement to directly government.
- Industries/Private Sector may get benefits from enhanced space parts supply chain, and get R&D budget to realize national space parts.

3. Establishment of the Space Parts Consortium - November 6, 2023

Purpose of Consortium

To keep flexibility and autonomy for spacecraft development

To develop an all-Japan strategy for space parts based on the needs and issues,

and to develop related action plans, and budget requests etc.

To Coordinate between Private and Public sector

Consortium Structure

4. Technical items that should be reflected in JAXA's Space Parts Technology Roadmap

Critical Semiconductor parts Technology	What needs to be done
Satellite Computing and Fully Digitalized Parts Technology	 (1) RHBD Technology 16nmFinFET (2) Development of further miniaturization technology (3) Improvement of environmental resistance of 3D mounting (thermal environment, vibration, shock, etc.)
Technology for High-speed, High-capacity Communication	 (1) Wide Bandgap (WBG): GaN device technology for utilization (2) Development of next-generation WBG devices (Ga2O3, diamond, etc.) (3) Assessment technology of utilizing High-Speed AD/DA Converters in space applications
Power Supply System Compatible parts Technology	 Assessment technology of utilizing Power Devices Developed for EVs in space applications All-solid-state battery (private sector development and assessment technology for utilizing in space application)
Peripheral Technologies	What needs to be done
Parts Evaluation Technology	 (1) PEM (Plastic Encapsulated Microcircuits) Assessment Technology for Resistance of Parts to the Aerospace Environment. (2) Whisker Countermeasure Assessment Technology. (3) Space Environment Evaluation Technology for Lead-Free Bonding Whisker Countermeasure Assessment Technology. (4) MEMS (Micro Electro Mechanical Systems) Development of Assessment technology. (5) Radiation Tolerance Assessment Technology for General Parts.

5. Achievement in FY2022~FY2023

As a pilot activity of the Space Parts **Consortium**, we proposed private-sector requests to the Keidanren Space Development and Utilization Committee (March 2023) and successful to incorporate 2 items into the Basic Space Plan Update.

(1)New Development of important micro-processor for space

(2) Coordination for irradiation test opportunities

Expectations for Japanese FPGAs and supply chain restructuring

Challenges related to radiation testing

Major irradiation facilities in Japan used in the space/ground field

- Issues related to the use of radiation facilities in Japan
- Due to the operation rules of the irradiation facility, the irradiation test application period is basically only twice a year.

The user cannot perform the irradiation test at the required time.

- Since there is a large demand for irradiation facilities in the evaluation of ground parts, there is an issue with the machine time that can be obtained.
- The cost of irradiation testing is so high that it cannot be borne by the venture company.
 As a result, we are reducing the opportunities for their evaluation.
 HIREC Proprietary Information

6. Forward Work Plan in2024

(1) Full Digital Expertise Subcommittee: Focus on NB-FPGA.

(2) Space Parts Technology Roadmap Subcommittee : Conducted a questionnaire on passive parts.

(3) Future Parts Technology Subcommittee (Heterogeneous Integration/Chiplet Study).