

ALTIUS O₃ retrieval algorithms and expected in-flight performance

E. Dekemper, N. Baker, A. Berthelot, G. Franssens, D. Fussen, N. Mateshvili, D. Pieroux, K. Rose, S. Sotiriadis BIRA-IASB, Brussels, Belgium

ESA UNCLASSIFIED – For ESA Official Use Only

ALTIUS instrument

*= - -

_ = = •

UV channel				
	bright limb	solar/lunar occultations	stellar/planetary occultations	
Field of view	2° x 2°	2° x 2°	0.2° x 0.2°	
Vertical sampling	600 m	600 m	60 m	
Spectral filter technology	stack of 4 Fabry-Pérot interferometers			
Spectral domain	250-355 nm			
Spectral resolution	2-3 nm			
Target species	0 ₃ , T°	O₃, BrO, OClO, T°	03	

VIS channel				
	bright limb	solar/lunar occultations	stellar/planetary occultations	
Field of view	2° x 2°			
Vertical sampling	200 m			
Spectral filter technology	acousto-optical tunable filter (AOTF)			
Spectral domain	440-675 nm			
Spectral resolution	2-10 nm			
Target species	O ₃ , NO ₂ , aerosols	O ₃ , NO ₂ , aerosols, NO ₃ ,	O ₃ , aerosols	

NIR channel				
	bright limb	solar/lunar occultations	stellar/planetary occultations	
Field of view	2° x 2°			
Vertical sampling	400 m			
Spectral filter technology	acousto-optical tunable filter (AOTF)			
Spectral domain	600-1020 nm			
Spectral resolution	2-10 nm			
Target species	aerosols	aerosols, H ₂ O	aerosols	

•

ALTIUS observation modes

On the capability of the ALTIUS data to constrain modelled stratospheric $O_3 \rightarrow$ Errera et al., AMT 14, 2021

Limb-scattering

Solar/Lunar occultations

Stellar/Planetary occultations

1. Based on synthetic data

RTM-generated scenes

ALTIUS mission performance verification approaches

• esa

- 1. Based on synthetic data
- 2. Based on existing satellite data

ALTIUS mission performance verification approaches

ALTIUS mission performance verification approaches

Main differences between ALTIUS and OMPS-LP :

• ALTIUS takes spectral images at selected wavelengths, while OMPS-LP records spectra

ALTIUS O₃ wavelengths: UV: 300, 315, 351 nm VIS: 525, 600, 675 nm

OMPS-LP O₃ wavelengths (v2.6): UV: 295, 302, 306, 312, 317, 322, 353 nm VIS: 510, 606, 675 nm

→ THE EUROPEAN SPACE AGENCY

Main differences between ALTIUS and OMPS-LP :

- ALTIUS takes spectral images at selected wavelengths, while OMPS-LP records spectra
- L2P forward model and state vector

State vector:

 O_3 profiles are described by the principal components of a climatology.

Main differences between ALTIUS and OMPS-LP :

- ALTIUS takes spectral images at selected wavelengths, while OMPS-LP records spectral
- L2P forward model and state vector

L2P Forward model:

ANN trained on pairs state vector – radiance profile

Inputs:

 O_3 , air, aerosol density, aerosol PSD (r, σ), albedo, SZA, SRAA

Outputs: $I(z, \lambda), Q(z, \lambda), U(z, \lambda)$

Radiative transfer model: SMART-G (Monte Carlo)

💳 📕 🚝 💳 🚛 📕 🏥 🚍 📕 📲 🚝 🚝 🚝 💭 🔤 🔤 🔤 🔤 🔤 🔤

Main differences between ALTIUS and OMPS-LP :

- ALTIUS takes spectral images at selected wavelengths, while OMPS-LP records spectra
- L2P forward model and state vector
- Spectral resolution

ALTIUS spectral resolution:

UV: 2 - 3 nm VIS: 1.5 – 5 nm NIR: 2 – 7 nm

OMPS-LP spectral resolution: 1 - 40 nm

→ THE EUROPEAN SPACE AGENCY

Main differences between ALTIUS and OMPS-LP :

- ALTIUS takes spectral images at selected wavelengths, while OMPS-LP records spectral
- L2P forward model and state vector
- Spectral resolution
- Orbit inclination, local time, vertical/horizontal sampling, etc.

Results of >2000 OMPS-LP observations processed (March 2016).

- ! SPS not yet able to digest OMPS-LP missing values → Results are to be seen as a validation of the L2P only !
- Good overall agreement (within the significance of the CCI+ validation exercise)

+

See Poster P5.6 by Sotiris Sotiriadis

Main differences between ALTIUS and SAGE-III ISS :

• ALTIUS takes spectral images of the Sun at selected wavelengths

→ THE EUROPEAN SPACE AGENCY

*

Main differences between ALTIUS and SAGE-III ISS :

- ALTIUS takes spectral images of the Sun at selected wavelengths
- SAGE-III L1 files contain a limited number of wavelengths → Spectral convolution by SPS tricky!

→ THE EUROPEAN SPACE AGENCY

+

Full end-to-end processing of one SAGE-III occultation:

- ! The SPS takes ages to fabricate the >1000 spectral images acquired by ALTIUS during the occultation !
- Differences are within the CCI+ PVIR 68% quantile
- If confirmed with more SAGE-III occultations, then the ALTIUS performance in solar occultation is adequate (instrument + algorithms).

See Poster P5.2 by Kristof Rose

Main differences between ALTIUS and GOMOS :

• ALTIUS takes spectral images of the stars at selected wavelengths, while GOMOS acquires spectra.

+

→ THE EUROPEAN SPACE AGENCY

*

Main differences between ALTIUS and GOMOS :

- ALTIUS takes spectral images of the stars at selected wavelengths, while GOMOS acquires spectra.
- GOMOS had 2 fast photometers to assess star scintillation, ALTIUS has not.

Typical amplitude of the scintillation factor for 1 second snapshots (typ. ALTIUS).

Two ways are envisaged to mitigate scintillation in ALTIUS data:

- simultaneous acquisitions and normalizations
- stronger regularization (on oscillations)

💳 📕 🚣 💳 🛨 📕 🚈 💶 📕 💶 📲 💳 🛶 👰 🚬 📕 💥 🛨 🔤 🚾 🐲 → THE EUROPEAN SPACE AGENCY

Main differences between ALTIUS and GOMOS :

- ALTIUS takes spectral images of the stars at selected wavelengths, while GOMOS acquires spectra.
- GOMOS had 2 fast photometers to assess star scintillation, ALTIUS has not.
- ALTIUS has a smaller aperture, hence reduced SNR (likely limiting to the 10-15 brightest bodies)

Full end-to-end processing of GOMOS data were achieved with the SPS, and the baseline L2P.

+

→ THE EUROPEAN SPACE AGENCY

|

Full end-to-end processing of GOMOS data were achieved with the SPS, and the baseline L2P. Many occultations of year 2004 were processed (SPS also very slow). Good agreement is observed down to 20km.

See Poster P5.1 by Antonin Berthelot

→ THE EUROPEAN SPACE AGENCY

Conclusions

ALTIUS will deliver stratospheric O_3 concentration profiles from 3 observation modes:

- daytime: limb scattering
- twilight: solar occultations
- nighttime: stellar/planetary/lunar occultations

Verification of the product performance is ongoing, using full end-to-end simulations

- ✓ instrument performance with the SPS
- ✓ data processing algorithms (L1P, L2P)

One approach for the mission performance assessment is based on heritage satellite datasets:

- limb scattering \rightarrow OMPS-LP
- solar occultations → SAGE-III ISS
- stellar occultations → GOMOS

First results show a good agreement within CCI+ PVIR products spread.

💳 📕 📮 🧮 🔚 🗮 💶 📲 📕 🔚 📥 👫 💳 🛶 🚳 🚬 📕 👯 💶 🔂 🔤 🔤 🚱 🔶 THE EUROPEAN SPACE AGENCY