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Mass loss of the Greenland ice sheet not only contributes to global mean sea-level

rise, but also has various consequences on local and regional scales. Development of

adequate mitigation and adaptation efforts regarding climate change requires

knowledge of the full range of possible future runoff scenarios. Traditional runoff

models rely on Regional Climate Models (RCM) to refine General Circulation Models

(GCM) data for a smaller geographic area. This downscaling is computationally too

expensive to obtain comprehensive projections. Therefore, we develop a runoff

emulator that is efficient enough to allow for production of large runoff ensemble

projections. However, RCM data does not directly constitute a spatially higher-

resolution rendition of the GCM, as it is solely influenced by the GCM through

boundary conditions but exhibits some variability within its domain. Furthermore, we

want to predict runoff, which is a variable not present in our low-resolution data but is

computed by the RCM and depends on the ice sheet properties that evolve over time.

We address these issues by including various additional information in our model.

1. Introduction & Motivation

The proposed approach relies on climate model data of different spatial resolutions:

Climate data from RCM with a coupled snow/ice subsurface scheme (~5-12km

resolution, referred to as HR data):

• main target: runoff

• additional targets (optional): temperature, pressure, rainfall, snowfall, snowmelt, etc.

• Input: HR elevation maps (and down-sampled elevation to medium resolution (MR))

Climate data from the driving GCM as model input (~30-100km resolution, referred to

as LR data),

• Variables from Greenland area (local features)

• Variables from whole North Atlantic region (non-local/remote features)

• Monthly aggregated variables of previous months that influence the characteristics

of the snowpack and thus runoff

2. Datasets

The proposed model consists of several components. The baseline network consists

of an Encoder-Decoder structure with additional layers for super-resolution and final

computation of the runoff prediction map 𝑅𝑡
𝐻𝑅

. All the other components in the

network are optional and are each designed to serve a distinct purpose:

A. A convolutional architecture is used for local feature extraction from LR data of

Greenland area. Super-resolution techniques are applied to reconstruct the HR

data from those extracted features.

B. HR and MR (i.e., down-sampled HR) elevation maps are incorporated to assist

reconstructing details at the HR scale. These details can not be derived from the

LR maps, leading to too smooth predictions.

C. Remote information from within the North-Atlantic area is captured via a dense

3. Model Design: Modules
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• Ad A: Choice of model framework and design for SR [9], residual learning,

attention gates (e.g., CBAM) to foster learning channel dependency [10]

• Ad B: Different ways of including elevation and terrain information:

include (down-sampled) elevation map at various levels in the network

[3, 7], reconstruct HR elevation during training [6], add a terrain-guided

loss to the objective [12]

• Ad C: assess the domain of influence [5]; different ways to catch remote

info: dense layers [3], non-local NN [8], or axial attention [11]

• Ad D: Various information, also such as daily spatial mean and std of the

input variables to scale them for block A (as done by [2]) are possible

• Ad E: Use different variables and aggregation methods; most simple

version: make spatial means of the monthly data and pass over the values

in D instead of using block E

• Ad F: include the previous and the following timestep; use a recurrent

structure [1, 4, 13]

• Use various output variables – do they help each other? Are the results

physically more consistent? (e.g., [6] learns the topography instead of

using it as input only)

4. Implementation & Open Questions

Pixel-wise loss on targets + basin-wise loss for runoff:
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network. The results of this dense network are

replicated over the spatial dimensions such that

they can be concatenated to the layers of block A

and are in the receptive fields of the upcoming

convolutions for each pixel.

D. Information such as seasonal indicators are added

to the dense layer.

E. Runoff is affected by snowpack characteristics

which is defined by the prevailing conditions of the

previous months or even years. Thus, we extract features from previous

prevailing conditions at the Greenland ice sheet area, e.g., monthly

averages of daily maximum temperature at the 500hPa pressure level and

total monthly precipitation, to infer snowpack characteristics. This

information is concatenated to the layers predicting runoff.

F. Inclusion of features from the previous and/or next timestep can help to

make more time-consistent predictions. To do so, the layers ℎ𝑡−1 (ℎ𝑡+1) of

the previous (next) timestep can be concatenated to the current hidden

layers ℎ𝑡 at the end of the network.
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