

Improved determination of natural emissions in Africa from a joint inversion of TROPOMI NO₂ and HCHO in the MAGRITTE CTM

Jenny Stavrakou, Beata Opacka, Jean-François Müller

Thanks to data providers

ESA UNCLASSIFIED – For ESA Official Use Only

Context and objectives

- Africa is a largely understudied continent; data scarcity leads to large uncertainties in emission estimates
- Natural NOx sources are significant in remote environments; Africa is major contributor for soil/lightning fluxes
- Satellite NO₂ provides valuable information on the spatial distribution and magnitude of natural NO sources

- African forests are a major source of biogenic VOCs, most importantly isoprene
- The oxidation of short-lived biogenic and pyrogenic VOCs dominate HCHO total production in Africa → satellite HCHO is an excellent proxy
- Thanks to high resolution of TROPOMI data, they can be combined with models to derive improved top-down NOx/VOC flux estimates

💳 💶 🚼 💳 🔚 📕 🗮 🔤 📕 📰 🗮 💳 🗮 🔤 层 🔤 🔤 🚱 🚬 🚺 💥 🛨 🖬 🔤 📰 🚱 → The European space agency

Past inversion studies suggest an overestimation of bottom-up VOC emissions

Models overestimate satellite HCHO over strong biogenic hotspots (Amazonia, Central Africa)

TROPOMI HCHO validation against FTIR data : TROPOMI is biased low

VOC and NOx linked through chemistry

- ✓ Change in radical chemistry with increasing NO

- ✓ How do NOx levels affect top-down BVOC estimates over Africa?
- How do the optimized BVOC levels affect topdown NOx emissions?
 - Design an adjoint inversion framework based on the MAGRITTE CTM constrained by TROPOMI NO₂ and (bias-corrected) HCHO accounting for chemical interdependencies

Ingredients of the adjoint model

→ THE EUROPEAN SPACE AGENCY

Annual results : observed vs. modelled columns

- ✓ Very good a posteriori agreement in terms of spatial distribution and magnitude
- \checkmark NO₂: strong bias reduction from -26% to almost zero; HCHO: -12% to -2%
- ✓ Discrepancies still persist after inversion, e.g. Highveld plateau
- \checkmark Although oceanic data are not used in the inversion, the bias over ocean is also reduced (from -32% to -16% for NO₂)

Seasonal variability of top-down columns

OBS A PRIORI TOP-DOWN

НСНО

The a priori columns capture relatively well the observed seasonality and the agreement greatly improves after inversion

The large negative biases of a priori modelled HCHO columns in regions 4, 5 are strongly reduced after inversion due to the strong enhancement of isoprene fluxes

TROPOMI suggests increased NOx and isoprene emissions

· e esa

→ THE EUROPEAN SPACE AGENCY

Category	A PRIORI	TOP-DOWN
Soil, TgN/yr	1.9	2.4
Lightning, TgN/yr	0.5	2.0
Isoprene, Tg/yr	125	162*

*185 Tg when NOx is not used to constrain the inversion 185 Tg

Evaluation of the top-down model : UT NO₂

- \checkmark UT NO₂ vmr (180-450 hPa) from TROPOMI NO₂ for 2018-2022 (Horner et al. 2024; Marais et al. 2021)
- Observation: ~50 pptv, relatively constant across seasons; A priori model: 14 pptv; Optimized : 35 pptv
- ✓ Stronger W-E gradient in the model than in observations → underestimation of lightning NO in the vicinity of the Horn of Africa or long-range transport (longer NOx lifetime?)

UT NO₂ data supports the substantial increase of lightning NO suggested by TROPOMI. An even larger source might be required to match UT NO₂ levels.

Evaluation of the top-down model : CrIS isoprene columns

Compared to the joint inversion, increased columns by 40%. This is due to lower NOx fluxes, lower OH levels and longer isoprene lifetimes in HCHO-only inversion

- CrIS : highest over Congo, Angola and along coast of the Guinea Gulf & Indian Ocean south of Equator, low values over grassland and shrubs (Namibia, Horn of Africa)
- A priori spatial patterns are more contrasted than the observations
- ✓ Joint inversion leads to a much improved agreement with CrIS (-33% → -10%), improved spatial distribution
- TROPOMI HCHO suggests a southward displacement of the isoprene hotspot and an increase of the overall column levels

Ignoring the bias correction results in very low isoprene, x4 lower than $CrIS \rightarrow$ strong evidence for the need to account for bias correction in the inversions.

→ THE EUROPEAN SPACE AGENCY

Conclusions and outlook

- ✓ Due to the chemical feedbacks, the simultaneous inversion of VOC and NOx emissions leads to an *improved top-down determination*, especially in Africa where NO_x fluxes are highly uncertain
- ✓ TROPOMI data suggest *substantial spatial changes* in emissions
- ✓ Top-down fluxes are much higher than bottom-up. Largest increase found for lightning emissions (x4), supported by UT NO₂ levels from cloud-sliced TROPOMI
- ✓ Tricky to discriminate between soil and lightning NOx flux → need for additional constraints, e.g. *in situ* INDAAF data
- ✓ Bias correction is crucial to the VOC optimization, leads to higher top-down emissions over source areas than in past studies, supported by CrIS isoprene
- Two-species inversion affects the inversion of isoprene fluxes due to chemical feedbacks

💳 💶 📕 🛨 🧰 💶 🚛 🚛 📕 💷 📲 🔤 📲 🔤 🛶 🚳 🛌 📲 👫 🖶 🖬 🔤 💳 🙀 🔶 The European space agency