

Institut für Umweltphysik

Fachbereich 01 Physik/Elektrotechnik

Results from greenhouse gas retrievals for the CO2M mission using the FOCAL method

Stefan Noël¹, Michael Buchwitz¹, Michael Hilker¹, Maximilian Reuter¹, Michael Weimer¹, Heinrich Bovensmann¹, John P. Burrows¹, Hartmut Bösch¹ and Ruediger Lang²

¹Institute of Environmental Physics, University of Bremen, Germany ²EUMETSAT, Darmstadt, Germany

Introduction

- The European CO2M mission:
 - Constellation of 3 satellites which will monitor global greenhouse gas concentrations
 - Instruments: CO2I (XCO₂, XCH₄, NO₂, SIF, ...), MAP (aerosols), CLIM (clouds)
 - First satellite is planned to be launched in 2026
- Data processing:
 - Three different retrieval algorithms to derive XCO₂ and XCH₄ currently under development for the operational processing system @ EUMETSAT
 - One algorithm is based on the FOCAL (Fast atmOspheric traCe gAs retrievaL) method
- Challenges:
 - Requirements on data product quality are high:
 - Systematic XCO₂ error <= **0.5 ppm** (random: ~0.7 ppm)
 - Systematic XCH₄ error <= 5 ppb (random: ~10 ppb)
 - Verification of requirements can currently only be done using simulated data
- First results for CO2M version of FOCAL presented in Noël et al., AMT, 2024
- Here:
 - Updated results using slightly improved input data (no major changes)
 - Focus is on XCO₂ systematic errors (most challenging requirement)

FOCAL Method

- Full physics retrieval based on optimal estimation
- Scattering is approximated by a single scattering layer
- Fast and accurate; suited for large data sets
- Successfully applied to measurements from OCO-2 (Reuter et al., Rem. Sens. 2017a,b), GOSAT and GOSAT-2 (Noël et al., AMT, 2021, 2022)

Performance Assessments

- Verification of requirement on XCO2 error (<= 0.5 ppm) requires some interpretation:
 - Requirements for systematic errors depend on application:
 - Quantification of anthropogenic emissions: Average inner-scene standard deviation ("high-pass filter") of the XCO₂ bias <= 0.5 ppm
 - -> Requires spatially highly resolved scene
 (2 km x 2 km XCO₂ images with emission plume(s))
 - Quantification of natural large scale fluxes: Scene-to-scene standard deviation ("low-pass filter") of the scene-average XCO₂ bias <= 0.5 ppm
 - -> Requires global data covering a full year (to consider possible long-term / large-scale errors)
 - Requirements are applicable for nadir/land/cloud-free only

Simulation of Input Data (1)

- Full-year global subset:
 - Subset contains every 15th ground pixel, every 20th scanline
 > 300 times less data, but similar coverage
 - Radiances computed with SCIATRAN considering e.g. also aerosols and surface BRDF, clouds
 - Meteorology from ERA5, CO₂ etc. based on CAMS model data for 2015 (spatial resolution ~ 2° x 3°)
 - CO2M geometry provided by EUMETSAT
 - Only nadir, land (so far)
 - ~6 million spectra modelled (for each band, one year)
 - -> Used for low-pass / large scale fluxes

Simulation of Input Data (2)

- 'Berlin scene':
 - Full 3 min granule
 - ~67000 measurements, ~37000 land/cloud-free
 - Input radiances generated with SCIATRAN as for subset data
 - Based on high-spatial resolution (9 km) gases and meteorology from CAMS nature run model data for 'Berlin scene' provided by EUMETSAT
 - Contains e.g. power plants in eastern Germany
 - -> Used for high-pass / anthropogenic emissions

Processing of Data

- · Procedures aligned to what can be expected in the commissioning phase for real data
- Retrieval settings:
 - Random noise added to spectra -> as for real data
 - CAMS (input) data as a-priori -> as for real data -> best case for simulated data

(no limitation, as shown using 400 ppm a-priori)

- Post processing:
 - Filtering (for e.g. outlier removal)
 - Bias correction (minimise systematic offsets)

• Generation of post processing data base:

- Input data: Retrieval results for April 2015 (subset data), only filtered for convergence etc.
- Assumed "true" values: CAMS data
- Filter parameters/limits are determined using variance minimisation method:
 -> prescribe percentage of data to be filtered out (currently 15%, tbc)
 -> max. 10 parameter limits which reduce mean variance between retrieved and true value most
- Bias correction based on machine learning regression (currently: gradient boosting, XGBoost)
 -> max. 10 best parameters for bias reduction and related data base

-> Post processing data base to be adapted during commissioning phase based on real data

Results: Power Plants in Berlin Scene

- Small systematic offset ~0.4 ppm (not relevant for emission determination)
- No plume structures visible in difference map
- Noise error similar to high-pass standard deviation -> high pass dominated by noise
- Estimate for noise subtracted: 0.1 ppm
- High-pass standard deviation 0.1 0.5 ppm (requirement: syst. error <= 0.5 ppm)

Results: Example for Subset Data

FOCAL-CO2M Subset 2015-04 (cloudfree)

- Retrieved data reproduce all large-scale patterns
- Scatter in differences dominated by noise
- April 2015 (training month -> best case)

Results: Low-pass

- Mean standard deviations of low-pass filtered subset data (monthly & annually)
- Best results for April (training month)
- Slightly higher standard deviations in other months (always < 0.6 ppm)
- Improvements expected
 when using more months
 (full year data set?) for
 post processing data base
 generation

 Yearly average low-pass standard deviation 0.5 ppm (requirement: syst. error <= 0.5 ppm)

- The FOCAL retrieval has been successfully adapted to CO2M
- Performance test using simulated data (nadir land, cloud-free) show that the requirement
 of a systematic XCO₂ error of <= 0.5 ppm is fulfilled by the FOCAL retrieval:
 - For natural large scale fluxes (low-pass filter), based on a full year (sub-sampled) data set
 - For anthropogenic emissions (high-pass filter), based on a high-resolution scene
- Reasonable retrieval results are obtained up to AOD 0.5 (syst. offsets <= 0.2 ppm) (even without using external aerosol information as input) – not shown here

• Notes:

- Requirements for XCH₄ have been checked in a similar way -> also fulfilled
- Retrievals using simulated data for 2020 show similar results
- All results are preliminary and based on simulated data
- Analysis needs to be re-done with real measurements (esp. update of post-processing DB)
- Further improvements possible by e.g. inclusion of aerosol information from MAP

-> Current results give good confidence that requirements can also be fulfilled for real measurements

Acknowledgements

- The work has been carried out with funding by the European Union Copernicus program through EUMETSAT contract EUM/CO/19/4600002372/RL, and the State and the University of Bremen.
- Part of this work is funded by the BMBF project 'Integrated Greenhouse Gas Monitoring System for Germany - Observations (ITMS B)' under grant number 01 LK2103A.
- ERA5 meteorological data were provided by the European Center for Medium Range Weather Forecasts (ECMWF).
- Large parts of the calculations reported here were performed on HPC facilities of the IUP, University
 of Bremen, funded under DFG/FUGG grant INST 144/379-1 and INST 144/493-1.

Thank you for your attention!

Performance Assessments

- Verification of requirement on XCO2 error (<= 0.5 ppm) requires some interpretation:
 - Requirements for systematic errors depend on application:
 - Quantification of anthropogenic emissions: Average inner-scene standard deviation ("high-pass filter") of the XCO₂ bias <= 0.5 ppm
 -> Requires spatially highly resolved scene (2 km x 2 km XCO₂ images with emission plume(s))
 - Quantification of natural large scale fluxes: Scene-to-scene standard deviation ("low-pass filter") of the scene-average XCO₂ <= 0.5 ppm
 -> Requires global data covering a full year (to consider possible long-term / large-scale errors)
 - Requirements are applicable for nadir/land/cloud-free only
- Verification method:
 - Low-pass filtering:
 - Determine for each orbit a running average of the difference to the assumed true value within a 1° x 1° (tbc) lat/lon box -> background XCO₂ bias
 - Compute standard deviation of this background XCO₂ (for whole year), considering cos(lat) weights
 - -> Check: Weighted standard deviation of all background values should be <= 0.5 ppm
 - High-pass filtering:
 - Apply low-pass filter to scene data -> background XCO₂ bias
 - Subtract background data from retrieved data -> high-pass filter data
 - -> Check: Standard deviation of high-pass filter data should be <= 0.5 ppm

Results: Berlin Scene

XCO2 a-priori = true

Mean Noise=0.5 ppm 1.0°x1.0° Low/High Pass Stddev.=0.3(0.5(0.1) ppm

- Noise error similar to high-pass standard deviation (0.5 ppm) -> high-pass dominated by noise
- Very similar results when using fixed 400 ppm a-priori profile

Aerosol Dependence: 2015 Subset Data

Universität

Bremen

- Retrievals should give valid results until AOD(550 nm) = 0.5
- SCIATRAN calculations for simulated data consider different aerosol types
- FOCAL retrieval does not explicitly consider aerosol (only one effective scattering layer)
- Small (< 0.2 ppm) systematic offsets due to aerosol for complete year
- Results may be improved when using extended training data for post-processing (not only April) and/or additional information from MAP
- FOCAL-CO2M is able to retrieve valid XCO₂ for AOD up to 0.5