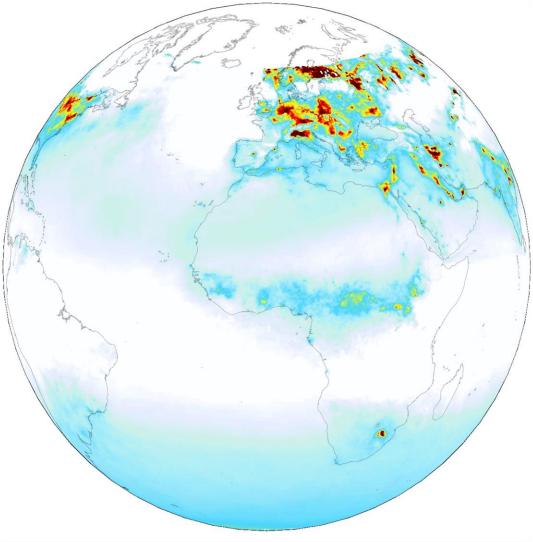
Identifying and accounting for the Coriolis effect in NO₂ observations and emission estimates


Daniel A. Potts ¹

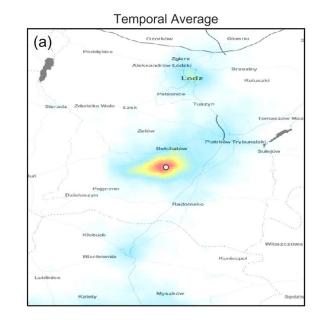
Roger Timmis² Emma J. S. Ferranti³ Joshua D. Vande Hey^{1,4}

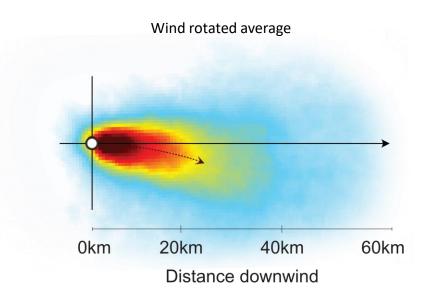
¹ School of Physics and Astronomy, University of Leicester, Leicester, UK ² Environment Agency, c/o Lancaster University, Lancaster, UK

- ³ School of Engineering, University of Birmingham, Edgbaston, UK
- ⁴ Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK

CENTA

How this study came about

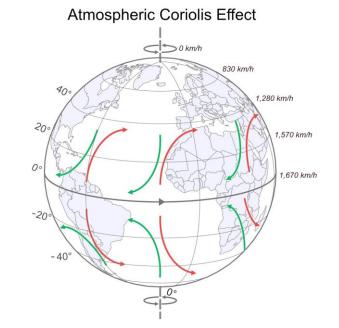

- PhD titled "smarter analysis of satellite data for air quality regulators"
- Testing out methods to quantify emissions from satellite observations
- Noticed a slight curvature in the wind rotated average from Belchatow power station in Poland
- Could this be due in part to the influence of the Coriolis Effect?

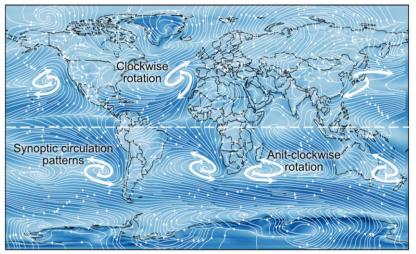

ENTA

EICESTER

Environment

gency




Coriolis effect

What is it?

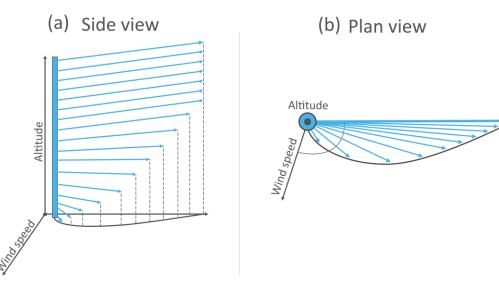
- Inertial force that acts on an object that moves within a rotating coordinate system
- Deflects clockwise in Northern Hemisphere
- Deflects anti-clockwise in Southern Hemisphere
- Effect greatest at the poles
- Negligible at the equator
- $F_c = -2m(\boldsymbol{\Omega} \times \boldsymbol{v})$
- Influences the movement of the atmosphere
 - Greater deflection for higher wind speeds

Average 100m winds (2019)

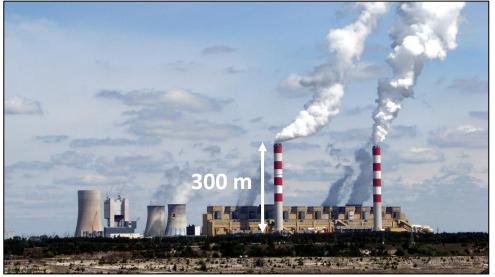
Environment

Agency

Coriolis effect


- Secondary impact of the Coriolis effect on emission plumes
- Plumes from power stations are
 - Thermally buoyant
 - Ejected at heights of +250 m
- Wind speeds increase with increasing altitude
- Coriolis force is a function of velocity $F_c = -2m(\boldsymbol{\Omega} \times \boldsymbol{v})$
- When conditions allow for the plume to ascend,
 - Plume rises into faster moving wind field
 - Wind field above is orientated at an angle to the field below

CENTA


• Known as the Ekman spiral

EICESTER

UNIVERSITY^{OF} BIRMINGHAM

Belchatow power station, Poland

 \square

dap33@leicester.ac.uk

Atmospheric Ekman Spiral

Environment

Agency

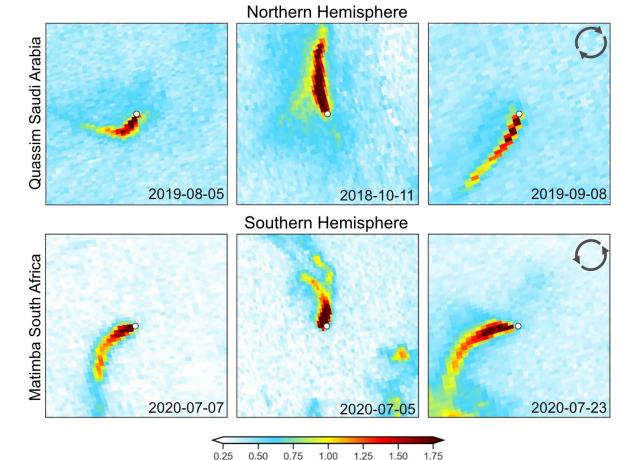
Impact on emission plumes

Emission plumes observed by TROPOMI can exhibit strong curvature

- Often (but not always) following the direction of the Coriolis force
- Local, smaller scale effect can dominate on daily timescales

Study question:

EICESTER

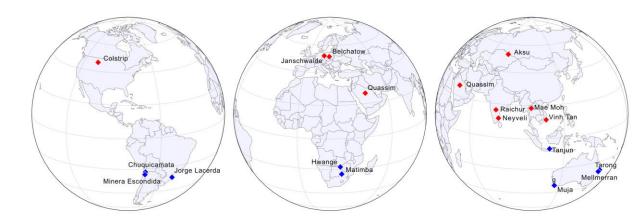

• For temporal averages, could Coriolisinduced curvature introduce a spatial bias?

ENTA

• Does this effect emission quantification

UNIVERSITYOF

He BIRMINGHAM


Tropospheric NO2 (molecules/cm^{2l}e¹⁶

Study design

16 large industrial point sources


- Mostly coal power stations
- Northern and southern hemisphere
- Range of continents
- Produce wind rotated aggregates for each site
- Identify presence/lack of curvature

n	Site name	Country	Type of site	Long	Lat	Stack height (m)	Capacity (MW)	Average surface pressure (hPa)
Nor	thern Hemisphere							
1	Colstrip	USA	Coal power station	-106.61	45.8835	215	1480	900
2	Janschwalde	Germany	Coal power station	14.458	51.8344	300	3000	1006
3	Belchatow	Poland	Coal power station	19.327	51.267	300	5102	992
4	Quassim	Saudi Arabia	Oil power station	44.013	26.205	NA	915	939
5	Mae Moh	Thailand	Coal power station	99.751	18.296	200	2455	968
6	Vĩnh Tân	Vietnam	Coal power station	108.803	11.317	210	6225	992
7	Neyveli	India	Coal power station	79.441	11.558	275	3390	1002
8	Raichur	India	Coal power station	77.343	16.355	220	1720	965
Sou	thern Hemisphere							
9	Chuquicamata	Chile	Copper smelter	-68.890	-22.314	NA	NA	736
10	Matimba	South Africa	Coal power station	27.613	-23.669	250	3690	914
11	Muja	Australia	Coal power station	116.305	-33.445	151	1094	985
12	Tarong	Australia	Coal power station	151.915	-26.784	210	1400	962
13	Tanjung	Indonesia	Coal power station	110.745	-6.445	240	2640	996
14	Hwange	Zimbabwe	Coal power station	26.470	-18.383	180	920	921
15	Jorge Lacerda	Brazil	Coal power station	-48.969	-28.452	200	857	1008
16	Millmerran	Australia	Coal power station	151.279	-27.962	141	850	967

💳 💶 📲 🚍 🚍 📲 📲 🔚 🔚 🚍 📲 📲 🚍 📲 🔤 🖬 🔯 🚬 📲 👫 🚍 🖬 🐨 🔤 🐨 🖓 🔶 The European space agency

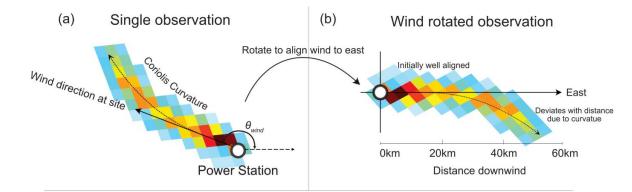
Wind rotation & EMG

- Common approach to derive emissions from satellite observations
 - Pommier et al, 2013
- Used for emissions from:

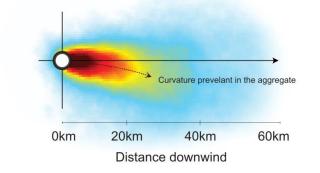
UNIVERSITY OF

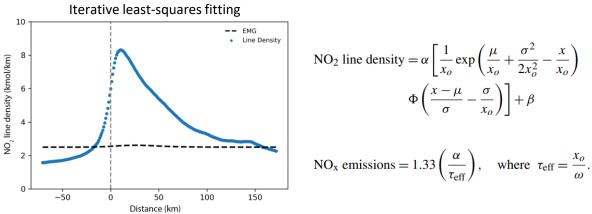
EICESTER

- Cities (Goldberg et al, 2019)
- Power stations (Fioletov et al, 2015 & Hakkarainen et al, 2021),
- Fertiliser plants (Clarisse et al, 2019 & Dammers et al, 2019)


ENTA


Environment


gencv


- Rotate all quality observations to a common axis in respect to that observations wind direction
- Fit an Exponentially Modified Gaussian (EMG)
- Extract emissions from fit parameters

BIRMINGHAM

Belchatow, Poland

Examples of curvature

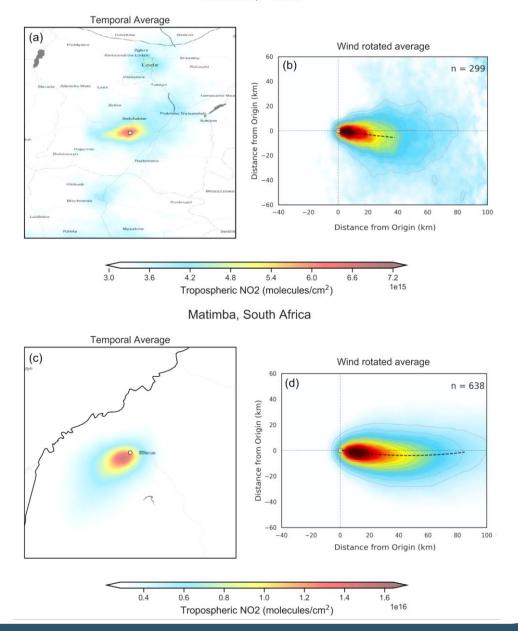
• Of the 16 sites:

UNIVERSITY OF

EICESTER

- 9 showed identifiable curvature
 - In expected direction
- 5 showed no/negligible curvature
- 2 showed opposing curvature
 - Discussed next slide

UNIVERSITYOF


HA BIRMINGHAM

• Clear deflection of aggregate plume from the "common" axis

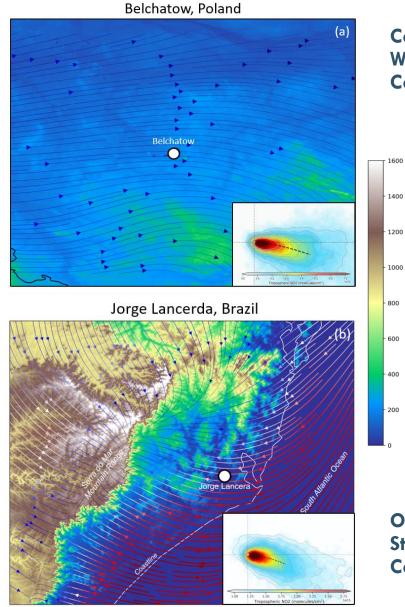
CENTA

Environment

Agency

Environment

Agency


Opposing curvature cases

- Jorge Lacerda, Brazil
- Chuquicamata, Chile
- Both in highly variable topographic regions
- Small scale local affects dominate over larger scale Coriolis influence
- In contrast to Belchatow with low speed, uniform wind fields

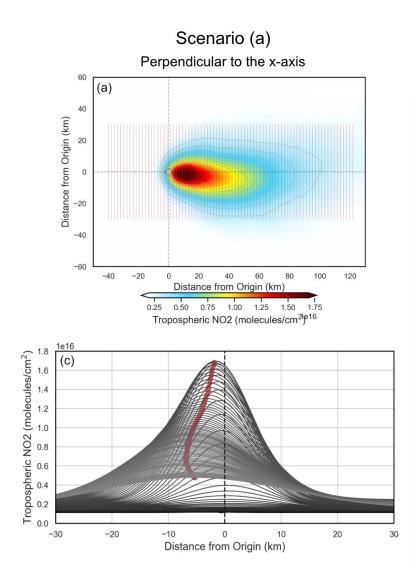
CENTA

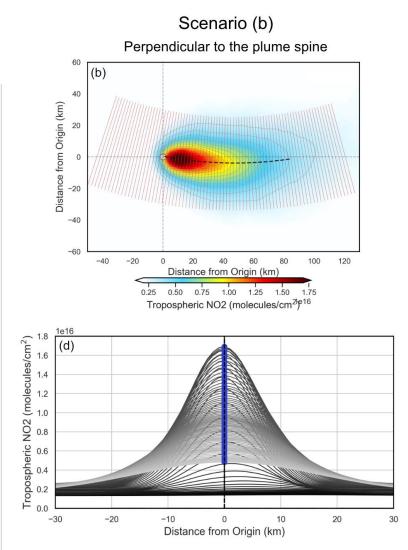
UNIVERSITY^{OF} BIRMINGHAM

EICESTER

Correct curvature Weak local affects Coriolis prevalent

Opposing curvature Strong local affects Coriolis not visible

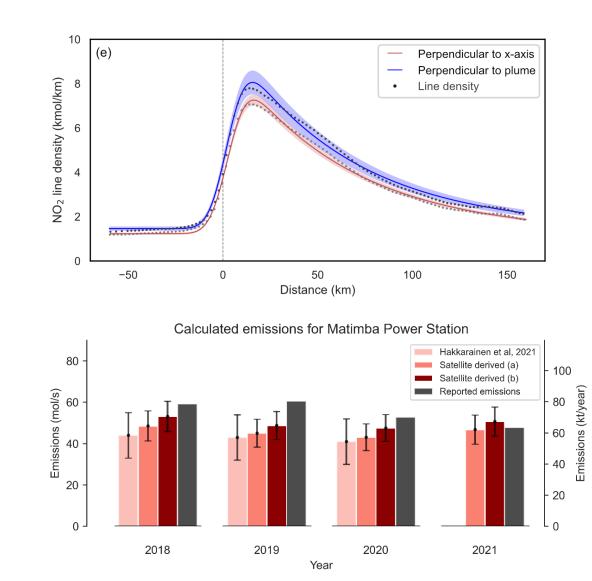

Elevation (m)


Impact on emission estimates

• Two approaches

UNIVERSITY OF LEICESTER

- a) Perpendicular to axis
- b) Perpendicular to plume spine
- By taking transects perpendicular to the plume spine, transect peaks are realigned to the origin
- More representative path of dispersion



Impact on emission estimates

- Approach (b) yields a higher maximum in line density curve
- Approach (b) yielded an emission rate more comparable to reported emissions
- **9%** difference in emission estimates between (a) and (b)

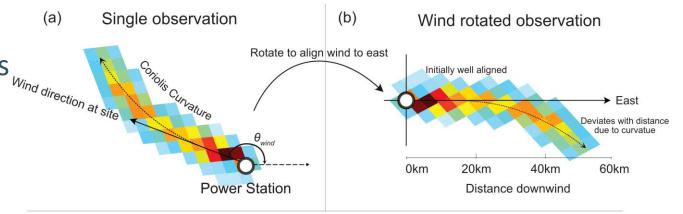
ENTA

Take away points

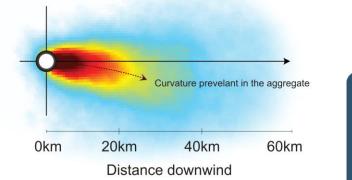
- Coriolis induced curvature can be observed in observed emission plumes
- In certain locations with simple meteorology
 - Curvature can be high
 - Can impact emission estimates (~9%)
- Care should be taken when performing wind rotation to ensure correct alignment to common axis
- If not aligned, the curvature should be accounted for

UNIVERSITYOF

BIRMINGHAM


EICESTER

Potts, D. A., Timmis, R., Ferranti, E. J., & Vande Hey, J. D. (**2023**). *Identifying and accounting for the Coriolis effect in satellite NO*₂ observations and emission estimates. Atmospheric Chemistry and Physics.


ENTA

Environment

gency

(c) Rotate and aggregate multiple observations

