Firebreak effectiveness prediction models developed from real wildfires in Southern Spain

Macarena Ortega, Francisco Rodríguez y Silva and Juan Ramón Molina
Forest Fire Laboratory (LABIF). University of Córdoba. Spain

macarena.ortega@uco.es
1. INTRODUCTION

Global Change → Fire regime alteration → Complex suppression scenarios

- more wildfires outside control capability
- higher suppression difficulties
- higher firefighting costs

More suppression resources
Higher preparedness budgets

Redefine fuel break networks (science-based criteria)
Areas where the structure of the vegetation has been modified by reducing fuel load

Areas where the species composition has been manipulated to reduce flammability

Firebreak effectiveness prediction models developed from real wildfires in southern Spain

1. INTRODUCTION

Fuel breaks

Areas where the structure of the vegetation has been modified by reducing fuel load

Areas where the species composition has been manipulated to reduce flammability

Firebreaks

All vegetation is removed down to mineral soil
1. INTRODUCTION

Fuel breaks/Firebreaks

- Reduce wildfire hazard
- Reduce uncertainty during suppression (better decision)
- Serve as anchor points
- Increase fireline production rates
- Increase firefighter safety
- Reduce suppression difficulty and suppression costs

Reduce the energetic progression of wildfires, facilitating safe and efficient suppression.
1. INTRODUCTION

WHY are firebreaks sometimes effective and sometimes not?

WHEN are firebreaks effective?
1. INTRODUCTION

Firebreak effectiveness

Probability of controlling a wildfire (likelihood of control)

It is assessed by different methodologies

- Inappropriately designs
- Change in firebreaks over time
- Extreme weather conditions

OPEN DEBATE

Research goals

- Quantitatively analyze the effectiveness of firebreaks during wildfires in Southern Spain
- Develop models to predict potential firebreak effectiveness in fire containment capabilities

Promote failures
2. MATERIALS AND METHODS

Database creation

A non-geospatial database

563 intersections between fires and fuel breaks (from 2011 to 2018)
2. MATERIALS AND METHODS

Effectiveness dependent variable

23 independent variables
topographic, meteorological, fuel, design feature, suppression and fire behavior variables

Combination of quantitative and qualitative variables

Exploratory analyses were carried out prior to the construction of the predictive models
3. RESULTS AND DISCUSSION

Data analyses

- Fuel break width
- Fuel break location
- Fuel break type
- Fuel model
- Wildfire front length
- Alignment of forces
- Angle fire-fuel break
- Flame length
- Suppression work

![Graph showing normalized importance of factors affecting firebreak effectiveness]

- Ground-aerial firefighting
- Ground firefighting
- Aerial firefighting
- Free fire spread

![Bar chart showing firebreak effectiveness]
3. RESULTS AND DISCUSSION

Data analyses
3. RESULTS AND DISCUSSION

- Non combined ground-aerial firefighting and ground firefighting
- The average flame length was 4.41 m
- Perpendicular intersections
- Alignment of forces 3/3
- Chaparral and slash and pine litter (>90 cm)
- Mid-slope, steepest slope and canyon bottom
- Average fuel break width was 13.11 m
3. RESULTS AND DISCUSSION

- Combined ground-aerial firefighting and ground firefighting
- The average flame length was 2.42 m
- Almost parallel intersections
- Alignment of forces 0/3
- Shrubs (<0.5 m) and slash and pine litter
- Flats, watershed divides and lower slopes
- Average fuel break width was 17.30 m
3. RESULTS AND DISCUSSION

Effectiveness predictive models

- Logistic regression (LR)
- Decision tree (DT)
- Artificial neural network (ANN-MLP)

Internal validation methods: bootstrapping resampling (LR), cross-validation (DT) and split-sample validation (ANN)
Firebreak effectiveness prediction models developed from real wildfires in southern Spain

3. RESULTS AND DISCUSSION
4. CONCLUSIONS

- This research entails a change in firebreak effectiveness assessment to an empirical approach in real wildfires in Spain.
- It has been proven the low effectiveness of firebreaks by themselves.
- Combined ground-aerial suppression work on firebreak increases meaningfully their effectiveness.
- Regarding predictive models, the most accurate results were achieved with an artificial neural network, however, decision tree is easier for end users.
- The applicability of predictive models has a twofold perspective:
 - Operational level (suppression). Reducing uncertainty and optimizing fire containment capability and firefighter safety.
 - Planning level (preparedness). Making possible to address the design of new firebreaks or the revaluation of existing ones.
THANK YOU FOR YOUR ATTENTION
Firebreak effectiveness prediction models developed from real wildfires in southern Spain

Macarena Ortega, Francisco Rodríguez y Silva and Juan Ramón Molina
Forest Fire Laboratory (LABIF). University of Córdoba. Spain

macarena.ortega@uco.es