Poster Session 1	
Monday 27 March, 5.30 PM – 7:30 PM	
Location: Hall D	
Sponsored by Beckman Coulter	

P1.01. A force-spectroscopy assay for studying binding of DNA repair proteins at individual DNA double-strand breaks Nicholas Bell, University College London	P1.02. How plants avoid 'bursting the bubble' Jared Carpenter, John Innes Centre	P1.03. A novel tensioned explant human skin platform for clinically relevant applications across medicine and the aesthetic and pharmaceutical industries Paul Campbell. Ten-Bio
P1.04. A nanomaterials approach to functional tissue substrates and cellular stimulation Alice King, University of Sussex	P1.05. LifeHack: An open-source, modular microscope for live & fixed cell single molecule imaging with high performance sample stabilisation Josh Edwards, University of Warwick	P1.06. Within-host modelling of T cell memory generation Yiping Zhang, University of Warwick
P1.07. In vitro spatiotemporal characterization of immune-tumor interactions reveals impairment of T cell cytotoxicity by mutation of adenomatous polyposis coli. Valentin Bonnet, Institut Pasteur / Ecole Polytechnique	P1.08. Understanding polymicrobial communities via direct microscopical observation in microfluidics Leonardo Mancini, University of Cambridge	P1.09. The effect of the spatial distribution of control agents on the spatial spread of resistance Wolfram Moebius, University of Exeter

P1.10. The Characterisation of Xog1 a β-1,3- glucanase from Candida albicans for Potential Biotechnological Applications Jennifer Littlechild, University of Exeter	P1.11. Star-shape: investigating astrocytes' mechanobiology and shape-function dynamics Ludovica Guetta, King's College London	P1.12. Resolving the membrane attack complex on live bacteria with atomic force microscopy Christian Bortolini, King's College London
P1.13. Identifying Immune Status to COVID-19 Using Dielectrophoresis Ms Krista Clarke, University of Surrey	P1.14. Measurement of cell cortical tension using AFM parallel plate compression Andreas Weber, London Centre For Nanotechnology, University College London	P1.15. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential Tailise De Souza G. Rodrigues, University of Warwick
P1.16. Innovation in the assessment of antimicrobial properties of biogenic nanomaterials Tailise De Souza G. Rodrigues University of Warwick	P1.17. Evolution of populations in fluctuating environments Matthew Asker, University of Leeds	P1.18. Understanding how antigen mobility influences B cell activation: from early signalling to antigen internalisation Hannah McArthur, King's College London
P1.19. Biophysics of Mammalian Primordial Germ Cell Migration William Foster, University of Cambridge	P1.20. A molecular and mechanical study of cell shape changes and cortex reorganisation during post-mitotic spreading Jeanne Lefévère-Laoide, University of Cambridge	P1.21. Study of cell-cell adhesion formation and dynamics in cancer cells using a hybrid cell - lipid bilayer system Sayantika Ghosh, Centre of Mechanochemical Cell Biology
P1.22. Scale-invariance in coarse-grained models for red blood cells Simon Hanna, University of Bristol	P1.23. Patterning of membrane adhesion under hydraulic stress Margarita Staykova, Durham University	P1.24. Multiple Intermediates in the Detergent-Induced Fusion of Single Lipid Vesicles Lara Dresser, University of York
P1.25. A biophysical model of phagocytosis Peyman Shadmani, University Of Exeter	P1.26. Mitotic Spindle Remodelling in Response to Severe Metabolic Stress Jessica Tin Wai Ng, University College London	P1.27. Less is more: Elucidating cellular transport using simplified cell models Ran Tivony, University of Cambridge

P1.28. Exploring the shared membrane tension responsive machinery which controls cell migration and division Joseph Hetmanski, University of Manchester	P1.29. Direct, nano-rheological studies of in- plane lipid dynamics in model and native membranes William Trewby, Durham University	P1.30. Biomimetic actin cortices shape cell- sized lipid vesicles Lucia Baldauf,University College London
P1.31. APC-driven actin nucleation controls collective cell remodelling and motility in colorectal cancer cells Lautaro Baro, National Horizons Centre, Teesside University	P1.32. A computational model for the transit of cancer cells through a constricted microchannel Yi Sui, Queen Mary University of London	P1.33. 2D Vertex model of early mammalian embryogenesis Ms Alaina Cockerell, University of Exeter
P1.34. "The very beautiful principles of natural philosophy": Paper marbling and the physics of organic forms Robert Pepperell, Cardiff Metropolitan University	P1.35. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks Mr. Pradyumna Harlapur, Cancer Systems Biology Lab, BSSE, IISc Bengaluru	P1.36. Characterizing bacterial genes with bimodal distributions of single-cell protein levels Ines Baptista, Tampere University
P1.37. A microfluidic platform to develop continously-operating nucleic acid based systems Kate Collins, Imperial College London	P1.38. To be or not to be: Uncovering the Interplay between Phenotypic Robustness and Plasticity in Gene Regulatory Networks. Anantha Samrajya Shri Kishore Hari, Indian Institute of Science	P1.39. Stochastic modelling of heterogeneity in cell populations Francesco Puccioni, Imperial College of London
P1.40. Sparse mathematical modelling of genetic networks Andreas Jørgensen, Imperial College London	P1.41. Physical model of supercoiling mediated regulation in synthetic gene circuits Victor Manuel Velasco Berrelleza, University of Leeds	P1.42. Optimal prediction in a noisy environment Jenny Poulton, AMOLF
P1.43. Emergence of ion-channel mediated electrical oscillations in Escherichia coli biofilms. Emmanuel Akabuogu, University of Manchester	P1.44. Identification of the source of extrinsic noise from the stochastic dynamics of gene expression Marta Biondo, University of Turin and INFN	P1.45. Exploring transcription dynamics along the cell cycle with single-cell RNA-sequencing data Dimitris Volteras, Department of Mathematics, Imperial College London

P1.46. Effect of receptor clustering on E.coli chemotaxis: Sensingversus adaptation Shobhan Dev Mandal, S. N. Bose National Centre for Basic Sciences	P1.47. Dynamical landscape of epithelial– mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks Mohit Kumar Jolly, Indian Institute of Science	P1.48. Characterizing the dynamic crosstalk between p53 and NF-kB and its regulation of gene expression and cancer cell fate Emanuele Colombo, San Raffaele Scientific Institute
P1.49. Building computers with genetically engineered cells, which can compute, add and subtract numbers and solve maze problems Sangram Bagh, Saha Institute of Nuclear Physics	P1.50. Bio-orthogonal conjugation for "wiring" redox active proteins to any conducting surface Nicholas Yates, University of York	P1.51. Bioelectric control of locomotor gaits in the walking ciliate Euplotes Hannah Laeverenz-Schlogelhofer, University of Exeter
P1.52. Accurate dynamics from memory in chemical reactions with small copy numbers Moshir Harsh, Institute for Theoretical Physics, University of Göttingen	P1.53. The pioneer Transcription Factor Oct4 can interpret and enhance nucleosome dynamics Jan Huertas, University of Cambridge	P1.54. Sticky proteins and moving genomes: a single-molecule perspective of pluripotent cell differentiation Srinjan Basu, University of Cambridge
P1.55. Quantifying the fitness effects of stochastic gene expression Paul Piho, Imperial College London	P1.56. Nucleosome repositioning in cell state transitions Vlad Teif, University of Essex	P1.57. Modulation of DNA entanglements by a Nucleoid Associated Protein Yair Augusto Gutierrez Fosado, University of Edinburgh
P1.58. Investigating the role of SMC proteins and CTCF in gene expression by HiP-HoP simulations of degron experiments Cleis Battaglia, University of Edinburgh	P1.59. Exploring the roles of myosin proteins in shaping nuclear organisation Chris Toseland, University of Sheffield	P1.60. Dissecting a transcription-coupled chromatin silencing mechanism through mathematical modelling Govind Menon, John Innes Centre
P1.61. 4D chromatin domains: temporal and spatial resolution of topologically associated domains Alonso Pardal, University of Warwick	P1.62. Response of bacterial regulatory networks under dynamic perturbations imaged with single cell resolution Aske Petersen, University of Cambridge	P1.63. Polymer Simulations Predict Gene Structural Heterogeneity and Transcription Michael Chiang, University of Edinburgh

P1.64. On the inference of transcriptional burst kinetics from scRNA-seq data Wenhao Tang, Imperial College London	P1.65. Melts of loop-extruded polymers Filippo Conforto, University of Edinburgh	P1.66. Biophysical Characterisation of NANOG- DNA interactions Amandine Hong-Minh, University of Edinburgh
P1.67. Allosteric topological modulation of toehold-mediated strand displacement Andrew Stannard, Imperial College London	P1.68. Understanding the relationship between mechanical and morphological changes in cells subjected to vibrational stimulation Olivia Johnson-Love, University of Strathclyde	P1.69. Towards mimicking the physical bone marrow microenvironment of hematopoietic stem cells Juan Rubio Lara, University of York
P1.70. Circular RNA as a platform for gene expression control in synthetic biology and therapeutics Lisa Doetsch, Imperial College London	P1.71. A geometry-driven organoid model for the investigation of the role of mechanical cues in pancreatic cancer Sophie Kurzbach, CPA, TUM	P1.72. Knitting with DNA Catherine Fan, University of Oxford
P1.73. Enhancing the spectral range of bacterial and plant Light-Harvesting antenna complexes using synthetic chromophores incorporated into lipid membranes Ashley Hancock, University of Leeds	P1.74. Protein-Functionalized DNA Hydrogels Giorgia Palombo, University of Edinburgh	P1.75. Novel Infrared Glucose Biosensors Optimised for in vivo Imaging Katherine Sanders, Newcastle University
P1.76. Frost spreading and pattern formation on microstructured surfaces Lukas Hauer, Humboldt University	P1.77. Video analysis of ciliated epithelia Ricardo Fradique, University of Cambridge	P1.78. Rotary motor powered gliding motility of a filamentous cyanobacterium as a possible driver of dynamic pattern formation within a biofilm Jerko Rosko, University of Warwick
P1.79. Motile cilia induce velocity and diffusion within the Periciliary Layer Erika Causa, University of Cambridge, Physics Department	P1.80. Mathematical modelling of trichome pattern formation in Arabidopsis thaliana Toquinha-Oerlia Bergmann, Freiburg Center for Data Analysis and Modeling	P1.81. Initially trapped individuals use wrinkles to escape from the centre in Bacillus subtilis biofilms during spatial expansions Nikhil Krishnan, University of Cambridge

P1.82. Light controlled biohybrid microbots Viridiana Carmona Sosa, University of Cambridge	P1.83. Towards robust Turing patterns in bacterial colonies Martina Oliver Huidobro, Life Sciences Department, Imperial College London	P1.84. Spontaneous Flow of Active Biofluids through Heterogeneous Environments Tyler Shendruk, University of Edinburgh
P1.85. Heads or tails, SNP or error, mobile or not; Bayesian inference in the detection of mobile mRNA Franziska Hoerbst, John Innes Centre	P1.86. Emergent surface tension drives self- organised patterning in Dictyostelium group migration Giulia Celora, University College London	P1.87. Directing and quantifying Min protein surface waves Sabrina Meindlhumer, Kavli Institute of Nanoscience Delft, Delft University of Technology
P1.88. A Minimal Tissue Model: The Cell as a Physical Object Iain Muntz, Tu Delft	P1.89. Vertex model for the turnover of squamous epithelial tissues Joel Hochstetter, University of Cambridge	P1.90. Multiscale measurements of mechanical stress in 3D co-cultures using a deformable micro-device Hiba Belkadi, Institut Pasteur - Ecole Polytechnique
P1.91. Migratory role of extra embryonic tissue in during early avian embryo development Dr Lakshmi Balasubramaniam, Gurdon Institute	P1.92. Mechanosensitivity and deformability of mechanically stimulated bone cells Rui Sousa, University of Strathclyde	P1.93. Light- controlled actomyosin contractility induces cell shape- changes Mallica Pandya, University College London
P1.94. Laser ablation informed mechanical state of an early-stage chick embryo KVS Chaithanya, University of Dundee	P1.95. How do we build brains? Investigating actomyosin contractility in hollowing epithelial tubes Millie Race, University of Cambridge	P1.96. Emergence of division of labor in tissues through cell interactions and spatial cues Noa Moriel, Hebrew University of Jerusalem
P1.97. Data-driven modelling of tissue growth in Drosophila abdomen Andrea Cairoli, University of Cambridge	P1.98. Bio-inspired ultrathin broadband sound absorber metamaterials Marc Holderied, University of Bristol	P1.99. Cell density as a negative feedback mechanism to ensure robustness of the body axis elongation process Joana M. N. Vidigueira, Gurdon Institute, University of Cambridge

P1.100. Active gel theory description of actomyosin pulsations in epithelial cells Euan Mackay, University of Dundee	P1.101. Applying Atomic Force Microscopy in Investigation of Structural Changes in Tomato Fruits Cell Wall Lazar Novakovic, University of Leeds	P1.102. A cell-based model for passive and active tissue rheology Fikret Basar, University of Cambridge
P1.103. Tyssue: modelling morphogenesis from molecular to tissue scales Sophie Theis, Warwick Medical School, University of Warwick	P1.104. Three-dimensional soft active matter modelling of corneal epithelial cell migration in vivo Jon Martin Collinson, University of Aberdeen	P1.105. Shape-tension coupling produces nematic order in an epithelium vertex model Jan Rozman, Rudolf Peierls Centre for Theoretical Physics, University of Oxford
P1.106. Root angle is controlled by EGT1 in cereals employing a novel anti-gravitropic mechanism Jacob Pattem, Nottingham University	P1.107. Nanoscale rheology via quantum photonic interference measurements of molecular rotor lifetimes Raul Alvarez-Mendoza, University of Glasgow	P1.108. Generating active T1 transitions through mechanochemical feedback Rastko Sknepnek, University of Dundee
P1.109. Friction when changing neighbours : adhesion-regulated junction slippage controls cell intercalation dynamics in living tissue Jocelyn Etienne, Liphy, CNRS - Univ Grenoble Alpes	P1.110. Extracellular matrix plasticity enables a pro-invasive mechanical cross-talk between cancer cells and cancer-associated fibroblasts Hamid Mohammadi, Francis Crick Institute	P1.111. Engineering covalently crosslinked protein hydrogels for precision medicine Rossana Boni, University of Edinburgh
P1.112. Crosstalk between physical and biochemical cellular heterogeneity dictate collective cell migration during epithelial wound closure. Sindhu Muthukrishnan, Indian Institute of Science	P1.113. Cellular Cruise Control: Mechanical energy dissipation regulates collective migration in epithelia Simon Martina-Perez, University of Oxford	P1.114. An imaging and FEM study into the mechanics of biological valves – how plants regulate photosynthesis in grasses Clinton Durney, John Innes Centre
P1.115. Measuring diffusion constant and concentration of planer core polarity proteins molecules using fluorescence confocal microscopy Manoj Prasad, University of Sheffield	P1.116. Tracking and tracing complex DNA structures Libby Holmes, The University of Sheffield	P1.117. Untwisting the Torsional Constraints on Processive DNA Replication; Decoding Genome Stability Jamieson Howard, University of York

P1.118. Single molecule mechanical	P1.119. Mechanical Biomolecule	P1.120. Live-cell super resolution imaging of
manipulation of tandem repeat proteins.	Encapsulation inside DNA Origami Boxes	actin using LifeAct-14 with a PAINT-based
Mohsin M. Naqvi	Mr Matteo Marozzi	approach
University of Cambridge	The University Of York	Haresh Bhaskar, University of Edinburgh
P1.121. Label-free identification of type III	P1.122. Exploring electric field sensing for solid	P1.123. Exploration of single-molecule
CRISPR-Cas second-messengers, one molecule	state nanopore based DNA and Protein	dielectrophoresis by means of trapping and
at a time	sequencing applications	actuation
David Fuentenebro	Mr Muhammad Sajeer P	Janike Bolter
Wageningen University and Research	Phd Scholar	University of Twente
P1.124. Generating, imaging, and characterising DNA plectonemes with combined transverse magneto-optical tweezers, fluorescence microscopy, and all- atom molecular dynamics simulation Jack W Shepherd, University of York	P1.125. Visualising NDP52 shape DNA Confirmation Daniel Rollins, University of Sheffield	P1.126. Unpicking DNA Translocation in Nanopores with Simultaneous Single-Molecule Fluorescence and Optical Single Channel Recording Mark Wallace, Kings College London
P1.127. Tractor beams and single molecules:	P1.128. Tracking single molecules on fluorous	P1.129. Structural Conversion of alpha-
How to visualize and manipulate single	coated surfaces: New toolkit to study	Synuclein at the Mitochondria Induces
biomolecules in real-time	biomolecule interactions	Neuronal Toxicity
Emma Verver, Lumicks	Carlos J Bueno Alejo, University of Leicester	Mathew Horrocks, University of Edinburgh
P1.130. Single molecule experiments and theory of the bending and looping dynamics of DNA at the scale of its persistence length. Bhavin Khatri, Imperial College London	P1.131. Single cohesin molecules generate force by two distinct mechanisms Maxim Molodtsov, University College London	P1.132. Rapid and Reversible Conformational Switching of Single DNA Hairpins Sarah Graham, University of York

Poster Session 2	
Tuesday 28 March, 5.30 PM – 7:30 PM	
Room: Hall D	
Sponsored by LUMICKS	

P2.01. Investigating the evolution of developmental strategies using spatiotemporally patterned telencephalic organoids. Taniya Mandal, Francis Crick Institute	P2.02. Novel mathematical models for fate selection in neural crest stem cells Karol Bacik, University of Bath	P2.03. Capillary forces functionally remodel membrane-bound organelles and condensates inside cells Roland L. Knorr, Humboldt-Universität zu Berlin
P2.04. Gene expression dynamics during cell fate decisions in the retina Cerys Manning, University of Manchester	P2.05. A study on the spatiotemporal dynamics and fitness landscape of bacteriophages Hassan Alam, University of Cambridge	P2.06. The interplay of size and pattern during evolution Amy Bowen, Francis Crick Institute
P2.07. Curve registration – an approach for comparing gene expression dynamics over different developmental timescales Ruth Kristianingsih	P2.08. Exploring the design principles of Arabidopsis in response to temperature changes Paula Avello, University of Leeds	P2.09. Blastoid-on-a-chip: development of a microfluidic platform for dynamic visualisation of pre-implantation embryogenesis Georgina Glover
P2.10. YAP levels and dynamics control cell fate and proliferation Kirstin Meyer, University of California San Francisco	P2.11. Dynamic Sigma Factor Patterning in Bacillus Subtilis Biofilms Alexander Mckinnon, University of Cambridge	P2.12. Fast fingerprint of insulin structure and stability assessment with A-TEEM (Absorbance-Transmission Excitation Emission Matrix) spectroscopy Giorgia Marucci, HORIBA UK
P2.13. Advances in Localization Atomic Force Microscopy George Heath, University of Leeds	P2.14. Role of Sam68 in phase separation and fibre formation Cyril Dominguez, University of Leicester	P2.15. The Cellular Electrome: The Extracellular Significance of Potassium Oreoluwa Griffiths

P2.16. The Antagonistic Effect Of Oxysterols In ClyA Pore Formation Pathway Samlesh Choudhury, Indian Insitute of Science Banagalore	P2.17. Heterogeneous endosomal dynamics within eukaryotic cells Nickolay Korabel	P2.18. Self-quenching behaviour of fluorescent probes incorporated within lipid membranes explored using electrophoresis and fluorescence lifetime imaging microscopy Dr Peter Adams, University of Leeds
P2.19. Quantitative Microbiology with Microscopy: Effects of Projection and Diffraction Georgeos Hardo, University of Cambridge	P2.20. The importance of water in membrane receptor function Anthony Watts, Oxford University	P2.21. Experimental investigation of non- classical excited-states energy transfer dynamics in green fluorescent protein tandem assemblies using time-resolved fluorescence anisotropy Alejandro Sanchez-pedreno Jimenez, University of Surrey
P2.22. A neutron diffraction study finds that Trimethylamine-N-oxide drives urea out of a β-turn's solvation shell Mazin Nasralla, University of Leeds	P2.23. Viral RNA Conformation Analysis via Nanotechnology at Single Molecule Resolution Chalmers Chau, University of Leeds	P2.24. Uncovering conserved mechanisms in the assembly and activity of eukaryotic and archaeal minichromosome maintenance proteins Oliver Noble, University of York
P2.25. Single-molecule imaging of Botulinum Neurotoxin translocation Mrs Joanne Carniello, King's College London	P2.26. Probing the Redox Chemistry and Structure Function Relationship of LPMO's via Electrochemistry Connor Miles, University of York	P2.27. A new twist on drug design: AdhE spirosomes as cross species anti-virulence targets (Withdrawn) Ester Serrano, University of Glasgow
P2.28. Ultrasensitive fluorescence detection of conformational changes in single lipid vesicles Steven Quinn, University of York	P2.29. Interaction between the chlamydia effector protein TarP and the SH2 domain of Vav2 Tharin M. A. Blumenschein, University of East Anglia	P2.30. A novel RNA thermosensor element regulating teichoic acid biosynthesis in obligate human pathogen Streptococcus pneumoniae (SPN) Mr Kuldeep Sharma, Indian Institute of Technology Bombay (iit Bombay)

P2.31. Transient structural dynamics during allosteric regulation of glycogen phosphorylase Jonathan Phillips, University of Exeter	P2.32. Tackling topology with TopoStats Max Gamill, University of Sheffield	P2.33. A toolkit of customised protein sensors for interrogating mechanical forces in the cell Maria Zacharopoulou, University of Cambridge
P2.34. A novel sliding interaction between the extracellular matrix polysaccharide hyaluronan and its lymphatic vessel endothelial receptor LYVE-1 that regulates immune cell trafficking Ralf Richter, University of Leeds	P2.35. Structural dynamics of membrane- associated proteins at microsecond timescales and sub-nanometre resolution with High- Speed AFM Tabitha Storer, University of Leeds	P2.36. Deciphering the structure of integration host factor with supercoiled DNA minivectors Ms Neha Ramteke, University of York
P2.37. Single-molecule and super-resolved imaging deciphers membrane behavior of onco-immunogenic CCR5 Patrick Hunter, University of York	P2.38. Passive microfluidics for the characterisation of neuronal signals in live nematodes Nino Läubli, University of Cambridge	P2.39. Biofilm Water Channel Network Model forBacterial Communication Yanahan Paramalingam, University of Warwick
P2.40. Modeling the Growth of Kidney Organoids subject to optogenetically-induced BMP4 Morphogens Jonas Pleyer	P2.41. Decoherence and Energy Transfer Dynamics of Green Fluorescent Proteins Anna Cusick, Surrey University	P2.42. DNA origami with fluorescent proteins Callum McKeaveney University Of Surrey
P2.43. How to tune the tempo of embryonic development across species: a mathematical toolkit Charlotte Manser, Imperial College London	P2.44. Using Shape Fluctuations to Probe the Mechanics of Stress Granules Jack Law, University of Bergen	P2.45. Multimodal quantum sensors for detecting nanoscale dynamics in C. elegans Sophia Belser, University of Cambridge
P2.46. Modelling DNA in Complex Topologies: The Role of Gyrase Katy Hollands, University of York	P2.47. Correlative light electron microscopy using small gold nanoparticles as single probes Paola Borri, Cardiff University	P2.48. Broadband Cavity Enhanced UV-VIS Absorption Spectroscopy for Picolitre Liquid Samples Imogen Fermor-Worth, University of Exeter

P2.49. A view to a kill: using 3D holographic microscopy to study the motility behaviour of predatory bacteria Emma Brock, University of Cambridge	P2.50. A fluorescence, microfluidic microscope built for microgravity and extreme Earth environments Katrina Crompton, Newcastle University Biosciences Institute	P2.51. Using light to control cellular energetics in Escherichia coli Tommy Schmidlechner, University of Edinburgh
P2.52. Selective manipulation of mitochondria function and cell viability in cancer cells through blue light and photosensitizer agent Emily Skates, University of Warwick	P2.53. Investigating the processes of life in the cold: high resolution imaging of Antarctic fish cells Anne-pia Marty, University of Cambridge	P2.54. Analysis of Common Motifs in Metabolic Systems with emphasis on the role of conserved moieties Robert West, University of Warwick
P2.55. Intracellular multimodal temperature and viscoelasticity sensing using nitrogen- vacancy defects in carbon nanocrystals Jack Hart, University of Cambridge	P2.56. Effects of molecular noise on cell size control Motasem ElGamel, University of Pittsburgh	P2.57. Unobtrusive wearable sensing to estimate human circadian process Nemanja Cabrilo, TU/e
P2.58. Tracking the life history of chromosomes (kinetochores) in human cell division Abdullahi Daniyan, University of Warwick	P2.59. Optical control of a synthetic oscillatory circuit Maria Cristina Cannarsa, Sapienza University of Rome	P2.60. Dynamics of membrane proteins using high-speed atomic force microscopy Abeer Alshammari, University of Leeds
P2.61. Developing a system for probing phase behaviour in synthetic proteo- liposomes/polymersomes Thomas Gregson, University of Leeds	P2.62. "Each Drop of Blood Measures its Time": Electrophysiological Rhythms in Blood Cells Fatima Labeed, University f Surrey	P2.63. Effect of Integrin αIIb/β3 proteins on lipid properties Ubeiden Cifuentes Samboni, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET)
P2.64. Interfacial residues in protein-protein complexes are in the eyes of the beholder Jayadevan Parvathy, Indian Institute of Science Bangalore	P2.65. Evaluating the Structural Dynamics of Photosynthetic Proteins using High-Speed Atomic Force Microscopy and Advanced Fluorescence Methods Maya Tekchandani, University of Leeds	P2.66. Kinetics of surface-immobilized, pH- sensitive DNA triplex switches Francisca D'Rozario, University of York

P2.67. Structural analysis of the influenza genome by high-throughput single virion DNA- PAINT Christof Hepp, Oxford University	P2.68. Investigating the binding pocket of the glycine receptor through atomic simulation and metadynamics Guangpeng Xue, Kings' College London	P2.69. High-resolution mid-infrared imaging of cervical lymph node metastasis in oral squamous cell carcinoma Safaa Al Jedani, University of Liverpool
P2.70. Progress in interferometric microscopy: from nanoparticles detection to dynamic cell imaging Martine Boccara, Musum of Natural History Paris	P2.71. High-Speed and Sensitive Flow Cytometry using Fluorescence Oblique Plane Microscopy Amir Rahmani, University of Leeds	P2.72. Molecular Mechanisms of Lipid-Induced Amyloid Fibril Formation from Global Fitting of Kinetic Models Alisdair Stevenson, ETH Zürich
P2.73. High Throughput Single Cell Bacterial Imaging Morten Kals, University of Cambridge	P2.74. Fusogenic liposome interactions with bacterial envelopes Anna Scheeder, University of Cambridge	P2.75. Seeing is believing: Imaging across scales to investigate the Actin nucleation activity of Adenomatous Polyposis Coli (APC) Mari Angeles Juanes, Teesside University / Centro De Investigacion Principe Felipe
 P2.76. Mapping nanostructural changes in E.coli Peptidoglycan Abimbola Feyisara Olulana, Department of Physics and Astronomy, University of Sheffield 	P2.77. Integrating analog and digital modes of gene expression at Arabidopsis FLC Svenja Reeck, John Innes Centre	P2.78. How worms explore 3D space Thomas llett, University of Leeds
P2.79. Deciphering oligomeric states in nuclear condensates using single-molecule step calibrated confocal microscopy Alex Payne-Dwyer, University of York	P2.80. CRISPR-trapping bacteriophages to shine the light on infection events Temur Yunusov, University of Cambridge	P2.81 Significant Electrophysiological Changes in White Blood Cells due to Hyperosmotic Stress in ME/CFS Krista Clarke, University of Surrey
P2.82. Emergence of chiral muscle fibers and its role in tissue deformation during mouse heart morphogenesis Naofumi Kawahira, UCLA	P2.83. scPrisma infers, filters, and enhances topological signals in single-cell data using spectral template matching Jonathan Karin	P2.84. Spatial and temporal heterogeneity in human cell division dynamics Nigel Burroughs, University of Warwick

P2.85. Unnatural Light Stimulation of a Natural System in the Cyanobacterium Synechococcus elongatus Kieran Randall, University of Warwick	P2.86. Rapid detection and classification of motile cell tracks in 3D Samuel Matthews, University of York	P2.87. From Live Cells to Single Molecules: Unravelling the Interplay Between 3D Genomic Structure and Gene Expression Faeeza Lorgat, University of Sheffield
P2.88. New chemical and microscopy tools targeting the complement system in neuroinflammation Dominic Alderson, Newcastle University	P2.89. Optimal Control Theory in Cancer Chronotherapy Byron Tzamarias, Mathematics of Real-World Systems CDT, Mathematics Institute, University of Warwick	P2.90. Using Nanomagnetic Heterostructures for the Improved Detection and Treatment of Kidney Cancer Rachel Matthews, University of Cambridge
P2.91. Lithographically defined magnetic heterostructures for the targeted screening of kidney cancer. Selma Leulmi Pichot, University of Cambridge	P2.92. Dielectrophoresis and Zeta Potential as Potential Bladder Cancer Diagnostics Rashedul Hoque, University of Surrey	P2.93. Optimisation of patient futures in cancer therapy Nigel Burroughs, University of Warwick
P2.94. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine Golnar Kolahgar, University of Cambridge	P2.95. Mechanisms underlying symmetry breaking in embryonic development Shayan Shamipour, University of Zurich	P2.96. Mechanical drivers of early mammalian development Marta Urbanska, University of Cambridge
P2.97. Intraoperative gamma imaging technologies: Could it be a game changer? Mohammed Alqahtani, King Khalid University	P2.98. Condensate's ageing modelled through molecular dynamics: protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates Ignacio Sanchez Burgos, University of Cambridge	P2.99. Microskøpe: a 3D-printed flat-pack microscope for mapping phase diagrams Clement Degut, University of York

P2.100. A Molecular Backbone Reduces the Minimal Kit Required for Structure Assembly Jeremy Guntoro, Imperial College London	P2.101. Optimisation of FLIM parameters for quantifying NAD(P)+/ NAD(P)H dynamics in cellular metabolism Adil Mustafa, University of Warwick	P2.102. Microfluidic DNA self-assembly methods for digital data storage Max Earle, University of Cambridge
P2.103. Data-driven mathematical modeling of the Wheat circadian clock Abhishek Upadhyay, University of Cambridge	P2.104. Understanding the Photophysics of Carotenoids in Bacterial Light Harvesting Protein Complexes Sagar Satpathi, University Of Leeds	P2.105. Building and breaking epithelial tubes Clare Buckley, University of Cambridge
P2.106. Mechanical mapping of fate maps in the early Xenopus embryo Ross McGinn, University of Cambridge	P2.107. Universal codes for the phase behaviour of prion-like low-complexity domains Maria Julia Maristany, University of Cambridge	P2.108. The hyperactivity of estrogen receptor fusion proteins in breast cancer Ana-Maria Gherghelas, University of Sheffield
P2.109. Understanding Dynamin Polymerization by Single-molecule Counting and Particle-tracking Using Mass Photometry Manish Singh Kushwah, University of Oxford	P2.110. Viscosity of intrinsically disordered proteins in phase separated condensates. Three different approaches for simulations Andres R. Tejedor	P2.111. Single-molecule trajectories in chemically active condensates Stefano Bo, King's College London
P2.112. Targeted disruption of transcription bodies causes widespread activation of transcription Martino Ugolini, Unil (lausanne)	P2.113. Molecular and emergent dynamics of recombinant algal pyrenoids by single- molecule tracking and optical tweezers Alex Payne-Dwyer, University of York	P2.114. Microfluidic technologies for dynamic compositional control of artificial cell systems Marcus Fletcher, Imperial College London
P2.115. Minimal polymer physics modelling of biological assemblies Luke Davis, University College London	P2.116. Protein-RNA condensates: complementary or competing interactions in ALS progression? Mark Driver, University of Groningen	P2.117. The potential role of liquid-liquid phase separation in long-distance RNA transport via the phloem Ruth Veevers, John Innes Centre

P2.118. Processive and distributive non- equilibrium networks discriminate in alternate limits David Jordan, University of Cambridge	P2.119. Intracellular Wetting of Biomolecular Condensates Halim Kusumaatmaja, Durham University	P2.120. Enhanced stability and kinetics of bacterial toxin with cholesterol Avijeet Kulshrestha, Indian Institute of Science, Bangalore
P2.121. Biophysics and immunology of PEGylated virus-like particle vaccines Milad Radiom, ETH-Zürich	P2.122. Liquid droplets as a nonequilibrium control mechanism Matthew Cotton, University of Oxford	P2.123. Collagen fibril self-assembly: a phase field crystal model Christopher Revell, University of Manchester
P2.124. Biology Exploits Geometry: Impact of Aspect Ratio on Protein Networks Matt Hughes, University of Leeds	P2.125. Optimal regimes of regulatory sequence evolution Reka Borbely, Institute of Science and Technology Austria	P2.126. Fluorescent Lifetime imaging of individual lipid domains Yiran Li, University of Leeds
P2.127. Modelling population bottlenecks in respiratory virus transmission Patrick Sinclair, University of Glasgow	P2.128. Evolving Tissue Pattern Scaling and Robustness Through Spatially Heterogeneous Feedback Lewis Mosby, The Francis Crick Institute	P2.129. Single-Molecule Structure and Topology of Kinetoplast DNA Networks Davide Michieletto, University of Edinburgh
P2.130. Does phenotypic heterogeneity govern bacterial biofilm resilience? Abhirup Mookherjee, University of Cambridge	P2.131. Are physics-informed neural networks (PINNs) the right tools for inverse reaction- diffusion problems? Success and Challenges Roozbeh Pazuki	P2.132. Phase2vec: Dynamical systems embedding with a physics-informed convolutional network Matthew Ricci, The Hebrew University of Jerusalem
P2.133. CellPhe: a toolkit for cell phenotyping using time-lapse imaging and pattern recognition Laura Wiggins, University of York	P2.134. Combinatorial approaches for understanding morphogenesis in 3D embryos Salvish Goomanee, Collège De France & CNRS	P2.135. Investigation of In Vitro and In Vivo of nano silver incorporate into bioglass/ceramics El Sayed Yousef, Department Of Physics, College Of Science, King Khalid University
P2.136. Application of Infrared techniques to define molecular signatures in uveal melanoma samples Mx Thiazzi Anakrazia, University of Liverpool		