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Welcome to the second Workshop on Physics Enhancing Machine 
Learning in Applied Mechanics! 
 
The ambition of the Institute of Physics Applied Mechanics group is to widening participation and 
facilitate exchange of knowledge in applied mechanics: from experiments to models and including 
approaches that combine physics-knowledge with machine learning strategies. This 1-day workshop 
is part of the activities organised by the Institute of Physics Applied Mechanics group and this year is 
co-sponsored by the journal Data-Centric Engineering, Siemens, and Rolls-Royce. Thanks to the 
support of the Institute of Physics (IOP), to the sponsors and to the outstanding invited speakers 
(who agreed to contribute to the workshop without a refund for travel expenses), this workshop is 
organised with a free registration for in-person attendance of sixty people and unlimited online 
participation. Moreover, thanks to the generosity of Data-Centric Engineering (DCE), five DCE travel 
grants were awarded to early career researchers to facilitate their in-person participation.  
 
The workshop features two outstanding keynote speakers who are driving the development of 
methods for enhancing machine learning in applied mechanics by embedding physics-knowledge. 
Moreover, this edition of the workshop features two speakers from industry and one from the UK's 
national institute for data science and artificial intelligence, providing invaluable inputs to current 
and future challenges on the application of physics-enhanced machine learning techniques. These 
speakers are at various stages of their career and cover a broad range of applications. I am beyond 
thankful to Eleni, Youngsoo, Shiva, Onur and Zack for accepting the invitation to contribute. 
Undoubtedly, they helped in attracting the overwhelming number of high-quality contributions for 
Session II of this workshop. I am extremely happy to report that this session consists of five early 
career researchers and one early career academic!  
 
It would have been impossible to organise this workshop without the excellent management skills of 
Claire Garland (IOP). Claire is without any doubt the most fantastic event manager with whom I have 
ever worked. Thank you, Claire! I would also like to personally thank: Andrew Hyde (from Data-
Centric Engineering) for his immediate enthusiastic reaction in sponsoring again this event, and Onur 
Atak (from Siemens) and Adrian Jones and Soph Patsias (from Rolls-Royce) for their precious help in 
setting up these new sponsorships.  
 
As of today, we know that sixty people will participate in-person and 191 will join the event online. 
These numbers are well-above the target we initially set. On behalf of the IOP Applied Mechanics 
group, I would like to thank each person that has registered to the workshop and will join the 
exciting discussions in this rapidly evolving field where physics-knowledge is more than ever 
extremely important! 
 
Dr Alice Cicirello 
Chair of the workshop and co-opted member of the Institute of Physics Applied Mechanics group 
17/11/2023 
 
  



Programme 
  
09:00 Registration and coffee  
 
09:30 Welcome on behalf of the IOP Applied Mechanics group and structure of the day  

Dr Alice Cicirello (University of Cambridge, UK) 
 
09:40 A brief introduction to Physics Enhancing Machine Learning in solid mechanics  

Dr Alice Cicirello (University of Cambridge, UK) 
 
SESSION I  
 
10:00 Keynote 1: Physics Enhanced Machine Learning for dynamics: at the nexus of data and 

models  
Professor Eleni Chatzi (ETH, Switzerland) 

 
11:00 Coffee Break  
 
11:30 Keynote 2 (remote): Physics-guided interpretable data-driven simulations  

Dr Youngsoo Choi (Lawrence Livermore National Laboratory, USA) 
 
12:30 Lunch Break  
 
SESSION II – CONTRIBUTED TALKS  
 
13:30 Differentiable programming for mesh-free fluid control  
 Roussel Desmond Nzoyem (University of Bristol, UK) 
 
13:50 A frame-invariant physically recurrent neural network for microscale analysis of rate and 

path-dependent heterogeneous materials  
Ms. Marina Maia, F P Van der Meer and I B C M Rocha (TU Delft, The Netherlands) 

 
14:10 A frame-invariant physically recurrent neural network for microscale analysis of rate and 

path-dependent heterogeneous materials  
Mr Andreas Ioakim1, Szymon Gres2, Michael Döhler3, Luke J. Prendergast1, and Eleni Chatzi2 
(1University of Nottingham, UK 2ETH Zürich, Switzerland, 3 Univ. Gustave Eiffel, France) 

 
14:30 Coffee Break  
 
15:00 Normalising Flows and Nonlinear Normal Modes  

Lawrence Bull1, Nikolaos Dervilis2, Tina Dardeno2, and Keith Worden2 (1University of 
Cambridge, UK, 2University of Sheffield, UK) 

 
15:20 Gaussian Process Port-Hamiltonian Systems  
 Thomas Beckers (Vanderbilt University, USA) 
 
15:40 Integrating Physics in Graph Neural Networks for Interaction Modeling  

Vinay Sharma, Keivan Faghih Niresi and Olga Fink (EPFL, Switzerland) 
 



16:00 Tea Break  
 
SESSION III: TALKS FROM INDUSTRIES AND RESEARCH CENTRES  
 
16:30 Generative AI supporting preliminary engineering design  

Babu Shiva (Rolls-Royce, UK) 
 
17:00 An Industrial Perspective to Machine Learning and Physics for Simulation and Digital Twiw  

Atak Onur (Siemens, UK) 
 
17:30 Physics - informed machine learning: a critique towards robust generalization and 

interpretability  
Zack Xuereb Conti (The Alan Turing Institute, UK) 

 
18:00 Drinks reception sponsored by DCE, Rolls Royce and Siemens  
  
  
  
  
  
  
  



Keynote I: Physics Enhanced Machine Learning for dynamics: at the 
nexus of data and models 
Eleni Chatzi (ETH, Switzerland) 
 
Modern engineering structures form complex  - often interconnected - assemblies that operate 
under highly varying loads and adverse environments. To ensure a resource-efficient, safe and 
resilient operation of such systems, it is imperative to understand their performance as-is; a task 
which can be effectuated through Structural Health Monitoring (SHM). This talk elaborates on use of 
monitoring and twinning technologies as a means to recast our engineering approach into one that 
regards structures and infrastructures as animate cyber-physical systems. We offer a view to fusing 
data and models via physics-enhanced machine learning schemes for modelling dynamical systems. 
We discuss the spectrum of such schemes as this unfolds from white to grey to black-box 
representations, which pose different requirements in terms of availability of physics and data. An 
optimal balance is sought with the aim to faithfully represent structures across their operational 
envelop, to reliably predict their performance under future stressors, and to advise on preventive 
and remedial actions at both the unit and fleet (system) level. We exemplify such a hybrid approach 
toward establishing closed-loop twin representations on a number of use cases drawing from civil, 
wind energy and aerospace structures.  

Keynote II: Physics-guided interpretable data-driven simulations 
Youngsoo Choi (Lawrence Livermore National Laboratory, USA) 
 
A computationally demanding physical simulation often presents a significant impediment to 
scientific and technological progress. Fortunately, recent advancements in machine learning (ML) 
and artificial intelligence have given rise to data-driven methods that can expedite these simulations. 
For instance, a well-trained 2D convolutional deep neural network can provide a 100,000-fold 
acceleration in solving complex problems like Richtmyer-Meshkov instability. However, conventional 
black-box ML models lack the integration of fundamental physics principles, such as the 
conservation of mass, momentum, and energy. Consequently, they often run afoul of critical 
physical laws, raising concerns among physicists. These models attempt to compensate for the 
absence of physics information by relying on vast amounts of data. Additionally, they suffer from 
various drawbacks, including a lack of structure-preservation, computationally intensive training 
phases, reduced interpretability, and susceptibility to extrapolation issues. To address these 
shortcomings, we propose an approach that incorporates physics into the data-driven framework. 
This integration occurs at different stages of the modeling process, including the sampling and 
model-building phases. A physics-informed greedy sampling procedure minimizes the necessary 
training data while maintaining target accuracy. A physics-guided data-driven model not only 
preserves the underlying physical structure more effectively but also demonstrates greater 
robustness in extrapolation compared to traditional black-box ML models. We will showcase 
numerical results in areas such as hydrodynamics, particle transport, plasma physics, pore-collapse, 
and 3D printing to highlight the efficacy of these data-driven approaches. The advantages of these 
methods will also become apparent in multi-query decision-making applications, such as design 
optimization. 
 
 
  



Contributed Talks: 

Differentiable programming for mesh-free fluid control 
Roussel Desmond Nzoyem (University of Bristol, UK) 
 
The field of Optimal Control under Partial Differential Equations (PDE) constraints is rapidly changing 
under the influence of Deep Learning and the accompanying automatic differentiation libraries. 
Novel techniques like Physics-Informed Neural Networks (PINNs) and Differentiable Programming 
(DP) are to be contrasted with established numerical schemes like Direct-Adjoint Looping (DAL). We 
present a comprehensive comparison of DAL, PINN, and DP using a general-purpose mesh-free 
differentiable PDE solver based on Radial Basis Functions. Under Laplace and Navier-Stokes 
equations, we found DP to be extremely effective as it produces the most accurate gradients; 
thriving even when DAL fails and PINNs struggle. Additionally, we provide a detailed benchmark 
highlighting the limited conditions under which any of those methods can be efficiently used. Our 
work provides a guide to Optimal Control practitioners and connects them further to the Deep 
Learning community. 

A frame-invariant physically recurrent neural network for microscale 
analysis of rate and path-dependent heterogeneous materials 
F P van der Meer, Ms. Marina Maia, I B C M Rocha (Delft University of Technology, Netherlands) 
 
Machine learning techniques have shown great potential for reducing the computational cost of 
finite element-based numerical analysis. In multiscale applications, so-called surrogate models are 
widely used to replace the FE problem at the microscale. By doing so, the main computational 
bottleneck of the method is alleviated and significant speed-up can be achieved. However, applying 
these models to materials with history-dependence comes with challenges. Two well-known 
problems in one of the most popular methods, Recurrent Neural Networks, are their poor 
extrapolation properties and their data-hungry nature. 

The alternative explored here benefits from the physics-based knowledge embedded in traditional 
constitutive models to address those problems. This work builds on previous developments and 
extends the Physically Recurrent Neural Network (PRNN) to deal with path and rate-dependent 
heterogeneous materials in a 3D finite strain framework. For that, a new architecture is conceived. 
In this setting, polar decomposition is applied to the deformation gradient, and the network is used 
to learn the mapping between stretch and stress. Finally, the stresses in the global coordinate frame 
are retrieved based on the principle of material objectivity.  

In the network, we encode the homogenized stretch tensor into a set of deformation gradients 
passed to a set of fictitious material points where the stress is computed using the same material 
models as in the micromodel. As a result, not only stresses are obtained, but also internal variables 
that are updated at every load step according to the physics-based assumptions in the microscale 
constitutive models. Finally, a decoder is applied to obtain a homogenized stress from the local 
stresses in the material points. For the numerical examples, we consider a composite micromodel 
with rate dependent plasticity for the matrix and hyperelasticity for the fibers. The extrapolation 
properties are tested considering loading scenarios unseen during training, including cyclic loading 
and relaxation. 

 
 



CMA-ES Optimization in Dynamic Soil-Structure Interaction 
Andreas Ioakim1, Szymon Gres2, Michael Döhler3, Luke J. Prendergast1, and Eleni Chatzi2 (1University 
of Nottingham, UK 2ETH Zürich, Switzerland, 3Univ. Gustave Eiffel, France) 
 
In the context of the workshop, which seeks to explore advanced techniques that merge physics 
knowledge with machine learning in applied mechanics, this works delves into an application of the 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for uncertainty quantification in dynamic 
soil-structure interaction (DSSI). 

Our focus revolves around the prediction of crucial soil-pile parameters, with a special emphasis on 
the embedded length of foundation piles, mobilized soil mass, and stiffness. Accurate estimation of 
these parameters is pivotal for modelling foundation behaviour but is often a challenging task. 

The key highlight of our work is the adaptation of the CMA-ES optimization method to tackle 
uncertainties related to estimation of foundation parameters. Specifically, it encompasses the 
embedded length, mobilized soil mass, and stiffness of foundation piles, leveraging data from 
dynamic lateral loading. 

This presentation aligns with the workshop's theme by emphasizing the critical role of the CMA-ES 
method in addressing the limitations and challenges in the integration of physics knowledge with 
stochastic model updating. We aim to demonstrate the efficacy of the CMA-ES method in predicting 
the distribution of soil-pile parameters, highlighting its potential for enhanced modelling, 
forecasting, and understanding the sources of uncertainty within the context of DSSI. 

Normalising Flows and Nonlinear Normal Modes 
Lawrence Bull1, Tina Dardeno2, Nikolaos Dervilis2, and Keith Worden2 (1University of Cambridge, UK 
2University of Sheffield, UK) 
 
In the context of dynamic decoupling problems, engineering dynamics has long held modal analysis 
as an exemplar. The method allows the exact decomposition of linear multi-degree-of-freedom 
(MDOF) systems into single-degree-of-freedom (SDOF) oscillators, thus simplifying the analysis of 
complex dynamic systems. However, modal analysis is a linear theory; if applied to nonlinear 
systems, the decoupling property (among others) is lost. We propose an alternative approach for 
nonlinear systems, utilising a physics-informed autoencoder. The modal transformation embeds 
measured data from nonlinear systems into a latent space where the log-likelihood of a linear state-
space model is maximised. We build the encoder with normalising flows, and estimate the 
transformation alongside the latent states and parameters of the linear representation (in a 
combined inference). We incorporate physics by imposing inductive biases on latent space: firstly, 
using a (generic) state space approximation (Kalman filter) and secondly by constraining the 
structure of that model to sample SDOF oscillators, reflecting predefined ordinary differential 
equations, which enable modal analysis. 
 
 

  



Gaussian Process Port-Hamiltonian Systems 
Thomas Beckers (Vanderbilt University, Nashville, USA) 
 
Data-driven approaches achieve remarkable results for modeling and control of nonlinear 
electromechanical systems based on collected data. However, these models often neglect basic 
physical principles which determine the behavior of any real-world system. This omission is 
unfavorable in two ways: The models are not as data-efficient as they could be by incorporating 
physical prior knowledge, and the model itself might not be physically correct and hence lack 
trustworthiness. In this talk, I will present Gaussian Process Port-Hamiltonian systems (GP-PHS) as a 
physics-constrained, nonparametric Bayesian learning approach. Gaussian processes are a powerful 
and flexible machine learning tool that has gained significant attention in recent years. GPs provide a 
probabilistic framework for modeling complex functions based on noisy observations, enabling not 
only predictions but also uncertainty quantification.  

GP-PHS have many favorable properties that make them highly interesting for modeling and control 
of electromechanical systems. In contrast to many physics-informed techniques that impose physics 
by penalty, the proposed data-driven model is physically correct by design. The Bayesian nature of 
GP-PHS uses collected data to form a distribution over all possible Port-Hamiltonian systems instead 
of a single-point estimate. Due to the underlying physics model, sampling from a GP-PHS model 
generates passive dynamics with respect to designated inputs and outputs. As the proposed 
approach preserves the compositional nature of Port-Hamiltonian systems and allows us to quantify 
the uncertainty of the model, robust energy-shaping control methods are exploited to achieve safe 
control of electromechanical systems with partially unknown dynamics.  
 
 
Integrating Physics in Graph Neural Networks for Interaction 
Modeling 
Keivan Faghih Niresi, Vinay Sharma, and Olga Fink (EPFL, Switzerland) 
 
Graph Neural Networks (GNNs) have recently shown efficacy in capturing interactions within 
complex systems. However, purely data-driven GNNs require extensive data and may struggle with 
unfamiliar configurations. Introducing physics into GNNs improves learning with less data, reduces 
long-term prediction errors in case of trajectory rollout generation, and enhances adaptability to 
novel configurations. 

In this study, we present two effective approaches for integrating physics into GNNs. The first 
approach enriches the input dimension of the graph with information extracted from underlying 
physics equations, while the second approach embeds physical inductive bias into the GNNs’ 
message-passing scheme, specifically tailoring it for dynamic predictions. 

In the first approach focused on district heating networks (DHNs), we demonstrate the beneficial 
role of physics in compensating for limited input data. Here, we apply physics-enhanced GNNs to 
estimate soft sensors i.e., pressures and temperatures solely based on mass flow rate (physical 
sensors). By incorporating fluid flow equations, losses in essential water state variables (temperature 
and pressure) are calculated and added as nodes in the DHN graph, enriching the input space. 
Primarily focused on enhancing the input space, this approach maintains versatility, allowing either 
spectral or spatial graph convolutional layers without any constraints. 

The second approach, applied to spring-mass systems, incorporates a physics-informed message-
passing scheme into the GNN architecture. This inclusion aims to address the challenges 



encountered by purely data-driven GNNs concerning error accumulation during trajectory rollouts 
and generalization to configurations not seen before. By conceptualizing the message-passing 
scheme as forward-time stepping and treating scalar and vector features distinctly, we achieve 
enhanced generalization and stable error accumulation over extended trajectory rollouts. 
Collectively, our studies underscore the importance of integrating physics in GNNs to enhance 
accuracy and interpretability, establishing the effectiveness of physics-informed GNNs for soft 
sensor modeling and complex interaction learning. 

 
 
Talks from Industries and Research Centres:  

Generative AI supporting preliminary engineering design 
Babu Shiva (Rolls Royce, UK) 
 
Many engineering solutions require technologies that rely on specialised know-how and knowledge 
of physics mechanisms underpinning their design and operation. As the world moves towards a 
digital era, current surrogate model approaches are either not fit for processing large databases, or 
unsuitable to deal directly with data typically deriving from computer-based analyses such as 
geometry representations and field quantities (e.g., stress, displacements, temperature, etc.). At the 
same time there is a need for enhanced design space exploration capabilities overcoming the 
limitations from parametric models, enabling the assessment of innovative design concepts through 
more free-form geometry modelling approaches. Conditional Generative Adversarial Networks are 
amongst the AI tools emerging for engineering design applications. This presentation provides an 
overview of the work conducted by Rolls-Royce and academic partners for the adoption of recent 
advances in deep learning to engineering applications by introducing a physics enhanced 
observational bias to the input dataset to train machine learning models, offering a semi-instant 
alternative to costly design simulations otherwise required for the assessment of possible design 
candidates. 

An Industrial Perspective to Machine Learning and Physics for 
Simulation and Digital Twin  
Atak Onur (Siemens, UK) 
 
AI and Machine Learning is transforming our world at an incredibly rapid phase. These innovative 
trends are steadily gaining momentum and also significantly influencing our engineering fields. While 
such techniques truly unlock new frontiers in the engineering field, their pure data-driven nature 
should be carefully treated. This aspect needs special attention as we move forward and correct 
positioning of ML methods and their variants are key in this sense.  

With a focus on an industrial perspective, this presentation will explore the application of Machine 
Learning methods in the context of Simulation and Digital Twin. It will emphasize the crucial 
integration of physics into these models, while referencing an overview of acceleration and Reduced 
Order Modelling (ROM) techniques. It will also explore different aspects of bringing physics 
knowledge to the fore, e.g. as part of real world measurement data, as well as part of constraining 
the ML architectures for efficient learning.  

 



Physics - informed machine learning : a critique towards robust 
generalization and interpretability 
Zack Xuereb Conti (The Alan Turing Institute, UK) 
 
The applied engineering world needs a machine learning that a) can generalize robustly with less 
dependence on representation in the data, and b) whose model structure holds an acceptable 
degree of physical interpretation. Often, these criteria are not easily met with in traditional machine 
learning methods, especially when applied to real-world systems where external factors and 
unknown phenomena bias the observations. 

In response, Physics-informed machine learning is a rapidly emerging topic where centuries of 
scientific knowledge and understanding are fused with data-driven strategies to model a variety of 
systems. There already exists a growing body of work on this topic, where different bias strategies 
are adopted to represent and incorporate knowledge from mechanistic models across a variety of 
machine learning frameworks. Predominantly, contributions so far focus on reducing the data-cost 
whereas less focus on preserving physical interpretability of the learned model. 

In this phase of emergence, it is crucial to inquire critically and discuss openly the pertinent criteria 
for modeling real-world systems, with in the current landscape of Physics - informed machine 
learning. These include model generalization and domain transfer, preservation of structural 
attributes, and model validation. With this, we seek to propose a research direction where the 
“Physics” in Physics-informed machine learning, could be leveraged more fundamentally. 
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