Using the BEST resources in your physics teaching (with a focus on Electric Circuits)

48th Stirling Physics Teachers Meeting Thursday 25th May 2023

Tim Browett

- IOP Scotland Physics Coach
- Physics Teacher at Banchory Academy, Aberdeenshire
- <u>@aphysicsteacher</u>

Brief introduction to BEST resources

BEST 11-16 Physics:

- 479 diagnostic questions
- 257 response activities
- 77 learning progressions

The best teaching draws on the best evidence

UNIVERSITY OF YORK SCIENCE EDUCATION GROUP

- Research evidence-informed progression toolkits for key concepts in 11-16 science
- appropriately-sequenced steps for learning progression

BestEvidenceScienceTeaching.org

@BestEvSciTeach



Hundreds of resources

All based on research evidence

ONLINE,
OPEN-ACCESS
& FREE!

DIAGNOSTIC QUESTIONS RESPONSE ACTIVITIES

PROGRESSION
TOOLKITSIOP Institute of Physics
Scotland

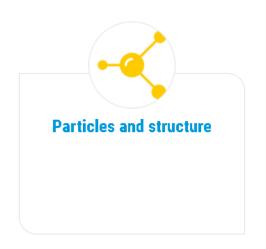
BEST Biology (age 11 to 16)

The cellular basis of life

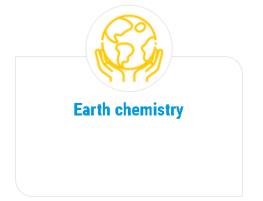
Heredity and life cycles

Organisms and their environment

Variation, adaptation and evolution



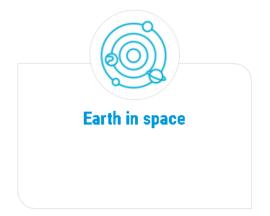

Health and disease



BEST Chemistry and Earth Science (age 11 to 16)






BEST Physics (age 11 to 16)

Physics Map of "Big Ideas"

- Matter (PMA)
- Forces and Motion (PFM)
- Sound, Light and Waves (PSL)
- Electricity and Magnetism (PEM)
- Earth in Space (PES)

Where's energy?

- Can something happen, not will it happen
- Calculations based on assumptions
- Does not explain how or why

Energy features in each of the "Big Ideas" of physics.

Primers

Using diagnostic questions

An introduction to using diagnostic questions to provide evidence of learning, diagnose misunderstandings and decide what to do next.

Using response activities

An introduction to using response activities to challenge misunderstandings, encourage metacognition and facilitate progress in

Teaching energy

An introduction to building students' understanding of energy using the stores and pathways approach.

Primers

Diagnostic Questions

help you to collect:

- evidence of where your students are in their conceptual progression
- evidence of common misunderstandings and preconceptions.

Can be used formatively to decide what to do next.

Response Activities

- encourage students to talk and think about what they're thinking (metacognition)
- facilitate purposeful practical work
- encourage meaning making.

Help to challenge misunderstandings and overcome barriers to conceptual development.

Big Ideas (PEM)

- Guidance notes
 - Challenging content, so teach late in 11-14
 - Battery v cell
 - Voltage v potential difference
- Learning progression
 - Science story at age 5-11, 11-14, 14-16

Big Ideas (PEM)

 Key concepts with suggested order

11-14:

Topic PEM1 Simple electric circuits Key concepts:

Making circuits PEM1.1 PEM1.2 Electric current PEM1.3 Voltage PEM1.4 Static electricity

Topic PEM2 More electric circuits Key concepts: PEM2.1 Resistance

PEM2.2 Parallel circuits

Topic PEM3 Magnets and electromagnets Key concepts: PEM3.1 Magnetic fields PEM3.2 Electromagnets

14-16:

Topic PEM4 Electric fields

Key concepts:

PEM4.1 Moving charge Topic PEM5 Circuit calculations

Key concepts: PEM5.1 Analysing series circuits PEM5.2 Analysing parallel

circuits

Topic PEM6 Circuit components Key concepts: PEM6.1 Components with changing resistance

Sensing

components

IOP Institute of Physics Scotland

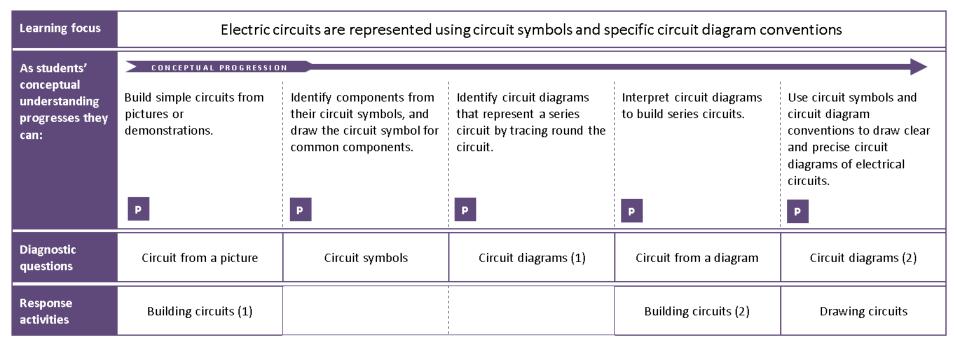
PEM6.2

PEM Topics for age 11-14*

- Simple electric circuits
- More electric circuits
- Magnets and electromagnets

* Some BGE content will be in the 14-16 materials

PEM Topics for age 14-16

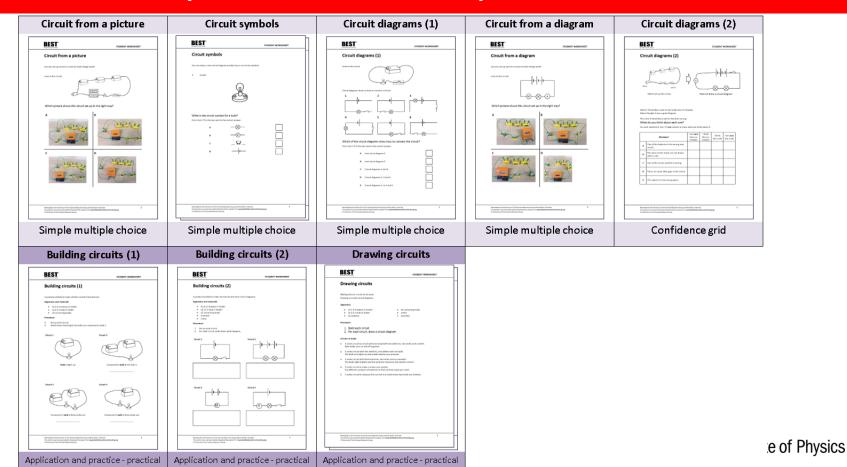

- Electric fields
- Circuit calculations
- Circuit components
- Electromagnetism
- Mains electricity

Key concept teacher notes (PEM1.1: Making circuits)

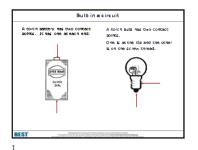
- Developing understanding of big idea
 - foundations for understanding of unfamiliar concepts such as current and voltage (PEM 1.2 and PEM 1.3)
- Progression Toolkit(s)
- Research notes
- Guidance

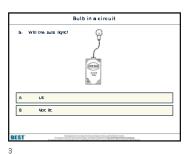
Progression toolkit (PEM1.1 1 of 2)

Progression toolkit: Circuit diagrams

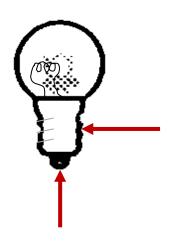


Key:


Prior understanding from earlier stages of learning


DQs and RAs (PEM1.1 1 of 2)

Diagnostic Question PowerPoints


Bulb in a circuit

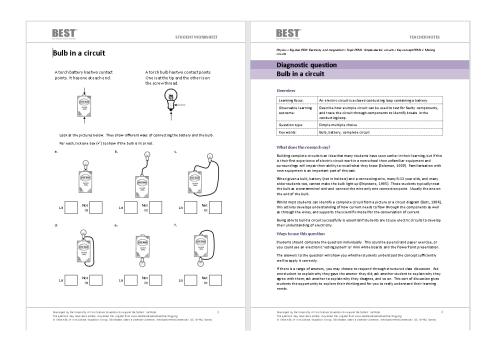
A torch battery has two contact points. It has one at each end.

A torch bulb has two contact points.

One is at the tip and the other is on the screw thread.

Bulb in a circuit

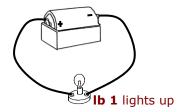
d. Will the bulb light?



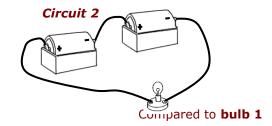
A Lit

B Not lit

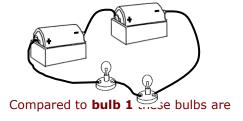
Diagnostic Question Word Documents

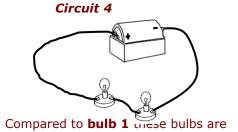


- Student Worksheet
 - Laminate or assign online
- Teacher Notes
 - What is being checked
 - What the research says
 - Usage ideas
 - Answers
 - Next steps


Building circuits (1)

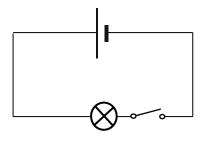
Build these circuits

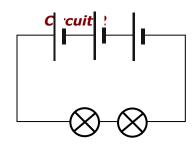

Circuit 1



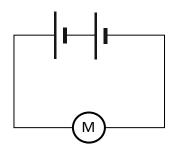
this bulb is

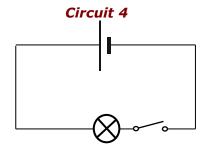
Circuit 3

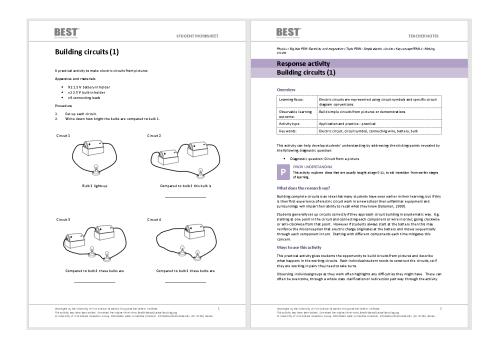




Building circuits (2)


Build these circuits For each circuit describe what happens


Circuit 1


Circuit 3

Response Activities

- Student Worksheet
 - Poly-pocket / card
- Teacher Notes
 - What is being checked
 - What the research says
 - Equipment list
 - Technician notes
 - Health and Safety
 - Expected Answers

For a quick win

- Download a single key concept
- Check progression toolkit order
- Find 1 DQ that gives the best <u>formative</u> assessment and embed into teaching
- Realise how useful it is, then add more

Getting the most out of BEST

- Download a whole Big Area
- Check each key concept order and guidance
- Print progression toolkit(s) and DQ/RA list
- Pick the best and embed

Handouts

- (How) Would you add these to your teaching?
- Do you have any questions?